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 Abstract -   In this paper, genetic algorithm based heuristic is proposed to solve the self reliant machine cell formation 

problem. The proposed algorithm selects the optimum part route with fixed operation sequence before clustering the 

machines and part family. A heuristic is applied within the genetic algorithm to assign parts to independent cell. The 

proposed model exclusively takes in to accounts relevant production data such as production volume, alternative part 

process route and operation sequence. Conventional optimization method for the optimal cell formation problem requires 

substantial amount of time and large memory space. Hence a genetic algorithm based heuristic method has been 

developed for solving the proposed model. The results approve the effectiveness of the proposed method in designing the 

manufacturing cell. 
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1. INTRODUCTION 

A cellular manufacturing (CM) problem has captured a great deal of attention of many manufacturers and 

researchers. The variety and the uncertainty of demand, variety of characteristics of the product and manufacturing 

process are the reasons that motivated the request for flexibility. Manufacturing systems must be able to produce 

products with low production costs and high quality as quickly as possible in order to deliver the products to 

customers in time [14-20]. The traditional manufacturing systems, such as job shops and flow lines, are not capable 

of satisfying such requirements. The Cellular manufacturing (CM) is a hybrid system linking the advantage of both 

job shops (flexibility in producing a wide variety of product) and flow line (efficient flow and high production rate). 

The cellular manufacturing system (CMS) organized production process into smaller units called machine cells 
(MC). Each cell operates independently; the inter-cellular parts trade-off is minimized, i.e., parts do not move from 

one cell to another for processing. The implementation of CMS helps organization to achieve several benefits, such 

as simplified production planning, process control, reduced through put times, reduced work-in-process inventory, 

reduced set-up times and reduced material handling. Over the last three decades, a large number of clustering 

methods have been developed for identifying potential manufacturing cells [21-28].  

2. LITERATURE REVIEW 

Albadawia et al. [1] addressed an approach to solve cell formation problem, involves two phases. In the first 

phase, machine cells are identified by applying factor analysis to the matrix of similarity coefficients. In the second 

phase, an integer-programming model is used to assign parts to the identified machine cells. To evaluate its 

performance, the proposed approach is applied to a real life problem from a manufacturing plant.  

Brown [3] develop a mathematical model that minimizes total costs of a CMS with intercellular transfer, 

machine duplication, and subcontracting while taking machine capacities into account to avoid capacity violations. 
Iqbal [4] addressed an approach to balance the total inter-cell moves cost and total intra-cell moves cost and 

to minimize the sum of the two. A nonlinear mathematical model has been proposed. The case targets the 

conversion of an existing job shop, employs seven machines for manufacturing six different jobs, into a CMS. The 

solution to the case is verified by production simulation. The total inter-cell and intra-cell moves costs suggested by 

the algorithm are found in good agreement with the simulation results.  

Jayaswal & Adil [12] developed a model and solution methodology for a problem of cell formation to 

minimize the sum of costs of inter-cell moves, machine investment and machine operating costs considering 

alternative routing.  

Lozano et al. [5] investigate two sequence-based neural network approaches for cell formation. The objective 

function is the minimization of transportation costs (including both intra-cellular and inter-cellular movements). The 

problem is formulated mathematically and shown to be equivalent to a quadratic programming integer program that 
uses symmetric, sequence-based similarity coefficients between each pair of machines. 
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Mahdavi et al. [6] developed a mathematical model for the joint problem of the cell formation problem and 

the machine layout. The objective is to minimize the total cost of inter-cell and intra-cell movements and the 
investment cost of machines. This model has also considered the minimum utilization level of each cell to achieve 

the higher performance of cell utilization. Two examples from the literature are solved by the LINGO Software to 

validate and verify the proposed model.  

Mahdavi et al. [7] addressed a cell formation problem. The objective is to group the machines and parts in 

dedicated manufacturing cells with minimize number of voids and exceptional elements in the cells. A genetic 

algorithm is proposed to solve the problem.  

Mukattash et al. [8] addressed an algorithm for the formation of manufacturing cells with unbounded cell 

sizes, such that inter-cell movements are minimized. A closed interval for the solution is then specified with a lower 

bound of the minimum inter-cell movements for the initial conditions and an upper bound on the inter-cell 

movements of the last cell. A combinatorial proof is provided to show that there exists at least one solution starting 

from the initial conditions.  

Shiyas & Pillai [9] proposed a genetic algorithm (GA) based solution procedure, applied for the mathematical 
model, provides best cell configuration. This GA is integrated with a part assignment rule to get both the cell and 

part family configurations. The GA is applied by using LINGO software. 

Shiyas and Pillai [10] develop a genetic algorithm (GA) based solution methodology for the model which is 

also solved using an optimization package. This model provides the decision maker the flexibility of choosing a 

suitable cell design from different alternatives by considering the practical constraints 

Solimanpur & Kamran [11] developed a mixed-integer and non-linear mathematical programming 

formulation to find the optimal solution. A technique is used to linearized the formulated non-linear model. A 

genetic algorithm is proposed to solve the linearized model. The effectiveness of the GA approach is evaluated with 

numerical examples.  

 

The review of the research literature cited above reveals various techniques proposed for design of CMS. This 
paper presents a mathematical model to design the independent CMS considering alternative part route using GA 

based heuristic. The model is designed considering realistic industrial manufacturing vision.  

2. PROBLEM FORMULATION 

In the present work, the objective of cellular system design is to integrate it with the alternative part routings 

with fixed sequence of operations which yields a machine-part matrix with least machine operating time and 

minimum trade-off between the cells. A mixed integer formulation of the PF/MC formation problem is presented 

below. The following assumptions and notations are used to develop the mathematical representation of the 

objective function and design constraints. 

 2.1 Assumptions 

1. The demand size for each part type is known. 

2. Operating cost of each machine type per hour is known. 

3. Each part type is processed by known sequence of operation. 
4. The cell size is specified in advance. 

5. The Operating times for all the part types on different machine types are known. 

6. Each machine type can perform multiple operations. Likewise, each operation can be done on one or more 

machine types in different times. 

7. The machine procurement cost of each machine type is known.   

8. Setup times and inventory are not considered. 

  

2.2 Notation 

 

(a)  Indicex set 
 
P  {p=1, 2, 3, . . . ,      P}  Part types.           K  {k= 1, 2, 3, . . ..., Op}  Operation k for part   

type p. 
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M  {m=1, 2, 3, . . . ..  M} Machine types.    C   {c=1, 2, 3, . . . … C}   Manufacturing cells. 

(b) Input Parameters 

 

P    = Number of part types.                        Op    = Number of operation of part p. 

M     = Number of machine types.                       C   = Maximum number of 

cells that can be formed. 

DDp  =Demand for part type p.                       µm         = Operating cost per hour of machine type 

m. 

δintra  =  Intra-cell material handling cost.        σm         =  Procurement cost of machine of type 

m. 

LB      = Lower bound cell size.                                      UB     = Upper bound cell size. 

Tkpm   =Time required to perform operation i of part type p on machine type m. 

ekpm          = 





.,0

,1

otherwise

mtypemachinedoneoncanbeptypepartkofoperationif
                             

(c) Decision Variables:- 
 

Umc       = Number of machine types used in cell c.      

  fkpmc      =   





.,0

.,1

otherwise

ccellinmtypemachineondoneisptypepartofoperationif  

 

2.2.1 Objective functions  
 

The subsection presents a fixed integer-binary programming model that selects optimum part process route, 

minimize material handling and machine duplication. The model generates configuration of independent cells 
while taking into account the alternative routings with fixed sequence of operations of each part type.  
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The first term of the objective function Z presents the machine procurement cost. The second term presents 

processing cost for operations performed on machine type m and the last term imply material handling cost.   

Subjected to: 
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Equation (2) ensure that each part operation is assigned to one machine and one cell. Equation (3) & (4) specify the 

lower & upper bound.  
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3. GENETIC ALGORITHM BASED HEURISTIC SOLUTION PROCEDURE 

A genetic algorithm based procedure is adopted for solution of design of CMS modeled in previous Section. An 
emblematic GA is based on the controlled growth of population, recombination operators and propagation over 

generations. The GA based solution procedure is presented in following sub-sections. 

 

 

3.1    Chromosome Representation of solution 

The chromosomal representation of solution applied to the proposed CMS model comprises of the following genes. 

 

 

𝑥11   𝑥12 ⋯ 𝑥1𝑅

⋮ … ⋮
𝑥𝑝1  𝑥𝑝2 ⋯ 𝑥𝑝𝑅

  

𝑦11   𝑦12 ⋯ 𝑦1𝑅

⋮ … ⋮
𝑦𝑝1  𝑦𝑝2 ⋯ 𝑦𝑝𝑅

  

 

             Fig.1 Chromosome macroscopic structure 

 

The matrix [X] indicates allocation of operation sequence of part type p to machines. The matrix [Y] implies row 

wise allocation of machines set in cells.  

3.2    Initialization of the population 

The initial population of preferred volume is generated randomly in steps. In first step, the segment [X] of the 

chromosome is generated randomly considering feasibility of performing part operation on machines. In second step 

segment [Y] of the chromosome is filled randomly. Solution for given problem is represented by the embedded 

segments (genes) structure known as chromosome.  

3.3 Evaluations:  

The fitness value is a decisive factor to measure the quality of a candidate solution or chromosome with reference to 
the designed objective function (Equation set 1) subjected to constraints (Equation set 2-4). The fitness values are 

used to select the parent solutions to obtain the next generation of solutions. The descendants or new solutions are 

selected with higher fitness value obtained by playing binary tournament between parent solutions.  

 The objective function of the CMS design problem is to minimize the total cost. However, genetic 

algorithm works with maximization functions. Thus necessary transformation from objective function to the fitness 

function is carried out in the following manner. [13]                          

i

i
C

C
Z




1.0

min
 

        Zi    :  fitness value of string i,  

        Ci    :  objective function value of the string i  

        Cmin         :       The smallest objective function value in the current generation.  

 

If the smallest objective function value is equal to zero, its value is set equal to 0.1. Thus the maximization of the 

fitness value corresponds to the minimization of the objective function (total cost) value. 

3.4 Genetic Operators 

3.4.1 Reproduction or Parent Selection   
After evaluating the fitness value of chromosomes in the population, better performing chromosomes (parents) are 

selected to produce the descendants. Chromosomes with higher fitness value have a higher chance of being selected 

more often, which is achieved by playing binary tournament between parent chromosomes according to their fitness 
value. Different selection schemes have been presented by Goldberg [14]. 

3.4.2    Crossover or Recombination  

Crossover is performed between two selected parent solutions which create two new child solutions by exchanging 

segments of the parent solutions, thus child solutions retain partial properties of the parent solutions. Figure 2 

depicts the chromosomes parent1 and parent 2 selected for crossover. There are two segments in the chromosome 
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one each for machine and cell. For crossover, the selection of segments can be row-wise or column-wise following 

the matrix limits and the crossover probabilities. 

3.4.3 Mutation  

Mutation performs a secondary role in functioning of genetic algorithms. Even though crossover operator makes an 

effective search and recombines chromosome, yet it may cause loss of some useful genetic properties. The mutation 

operator safeguards against such an irretrievable defeat. The mutation operator performs local search with a low 

probability. The mutation operator can be implemented by inverting part of a gene in a parent chromosome to obtain 

child chromosome, as shown in Figure 3. 

    

 

              

   

 Fig. 3 Mutation 

3.4.4 Repair function 

The crossover and mutation operation may distort chromosome structure so as to yield infeasible solutions 

i.e. every cell may not have minimum number of machine type. The repair function is used to repair the 

distorted chromosome such that no machine type is left unassigned, and every cell gets minimum number of 

machines as per Equation (3-4).  

     3.4.5 Stopping Criterion:  

The genetic algorithm continues to create population of child solutions until a criterion for termination is 

met. A single criterion or a set of criteria for termination can be adopted. In this case the termination 

criterion is the maximum number of generation, i.e. the algorithm stops functioning when a specified 

number of generations are reached.  
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Fig. 2 Recombination or crossover 
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4. COMPUTATIONAL EXPERIENCE 

To evaluate the computability of the proposed algorithm different problem scenario is adopted from the literature. 

Since the majority of cellular manufacturing systems operate with few cells and machines, the selected problem can 

provide a general perspective of the applicability of the proposed algorithm. The algorithm is coded in MATLAB-

2009 and run on 2GHz Pentium-IV workstation with Windows 7. Based on the computational experience the 

following values are considered for the parameters: Pmut=0.025, Pcross=0.7, Pop Size=100 and Maxgen=50. 

In order to verify the performance of the GA and computational capability, a total of fourteen problems have 

been solved by varying resolution parameters such as number of part type, cell size, and number of cells. A sample 
graph is also shown in Fig. No 5.  The data set of the problem scenarios are randomly generated and time spent in 

seconds to obtain result depicted in table no 1. 

5. CONCLUDING REMARKS 

A mixed integer mathematical model considering alternative routings for each part type is presented.  A heuristic 

algorithm is developed for unallied cell formation. The proposed algorithm generates a feasible solution by taking 

into consideration all the alternative routing of each operation & constraint on cell size.  

Start 

N=1 

Initialize P(n) 

Evaluate P(n) 

Crossover P(n) 

Mutation (n) 

Select P (n+1) from P(n) and C(n) 

N=n+1 

Satisfy Termination 
Condition? 

Best Individual 

End 

N0 

Yes 

Fig. 4 Genetic Algorithm Flow chart 
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The goal of this research is to develop a design methodology that minimizes the machine duplication, intra-cell 

material handling cost and operating cost by considering alternative routing. The proposed model generates machine 
cells and part families simultaneously and selects the best route instead of the user specifying predetermined routes.  
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