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Abstract: Fractional calculus is a field of applied 

mathematics that deals with derivatives and integrals of 

arbitrary orders. In recent years, considerable amount of 

research in fractional calculus was published in 

engineering and mathematical physics literature. Indeed, 

recent advances of fractional calculus are dominated by 

modern examples of applications in turbulence and fluid 

dynamics, stochastic dynamical system, plasma physics and 

controlled thermonuclear fusion, non-linear control theory, 

image processing, non-linear biological systems, 

astrophysics and electrochemistry. There is no doubt that 

fractional calculus has become an exciting new 

mathematical method of solution of diverse problems in 

science, engineering and applied mathematics. One of the 

main applications of the fractional calculus is modeling of 

the intermediate physical process. A very important model is 

the fractional differential and wave equations. Integral 

transformations have been successfully used for almost two 

centuries in solving many problems in applied mathematics, 

mathematical physics, and engineering science. 

Historically, the origin of the integral transforms including 

the Laplace and Fourier transforms can be traced back to 

celebrated work of Pieere – Simon – Laplace (1749 – 1827) 

on probability theory in the 1780s and to monumental 

treatise of Joseph Fourier (1768 –1830) on La 

TheorieAnalytique de la Chaleur published in 1822. Some 

of the recent and interesting application ns are as follows 

which shows the versatility of these transforms. J. Membrez 

et al have used the Laplace transform to determine protein 

adsorption on porous beads. G. B. Davis. used Laplace 

transform technique to find the analytical solution to single 

diffusion-convection equation over a finite domain. Li 

Renetal. applied it for solving convection dispersion 

equations. Fourier and Laplace transforms can be used in 

areas such as medical field for blood-velocity/time wave 

form over cardiac cycle from common femoral artery, in the 

analysis of functionally graded plates under thermo 

mechanical loading and in probability theory for the 

integral expression for positive part moments (p>0) of 

random variables. 

 

I. INTRODUCTION 

Fractional differential equations are a generalization of 

ordinary differential equations and integration to arbitrary 

non integer orders. The origin of fractional calculus goes 

back to Newton and Leibniz in the seventieth century. It is 

widely and efficiently used to describe many phenomena 

arising in engineering, physics, economy, and science. 

Recent investigations have shown that many physical  

 

systems can be represented more accurately through 

fractional derivative formulation. It is generally known that 

integer-order derivatives and integrals have clear physical 

and geometric interpretations. However, in case of 

fractional-order integration and differentiation, which 

represent a rapidly growing field both in theory and in 

applications to real world problems, it is not so. 

 

II. BASIC DEFINITIONS 

This section is devoted to review three important definitions 

of fractional derivative and give 

some examples of fractional differential equations equipped 

by them. 

i. Riemann-Liouvill definition: 

The popular definition of fractional derivative is this one: 

 
 

This operator has the following important properties: 

For a function f  

By using of this definition, V. V. Anh and R. Mcvinish 

considered fractional differential equations of the general 

form 

 
where ˙L is Levy noise. 

Fractional differential equations in terms of the Riemann-

Liouvill derivatives require initial conditions expressed in 

terms of initial values of fractional derivatives of the 

unknown function. 

For example, in the following initial value problem (where 

n−1 < α < n): 

 

ii. Grunwald-Letnikove: 

This is another joined definition which is sometimes useful. 

 
 

III. LAPLACE TRANSFORM 

The Laplace transform has a long history, dating back to L. 

Euler‟s paper „De Constructione Aequationum‟ from 1737. 

Since then it has been widely used in mathematics, in 

particular in ordinary differential, difference and functional 
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equations. An informative description of the contributions of 

mathematicians like Euler, Lagrange, Laplace, 

Fourier,Poisson, Cauchy, Abel, Liouville, Boole, Riemann, 

Pincherle, Amaldi, Tricomi, Picard,Mellin, Borel, Heaviside, 

Bateman, Titchmarsh, Bernstein, Doetsch, Widder and many 

others can be found in two historical surveys by M. Deakin 

(1981, 1982). 

Ordinary and partial differential equations describe the way 

certain quantities vary with time,such as the current in an 

electrical circuit, the oscillations of a vibrating membrane, or 

the flow of heat through an insulated conductor. These 

equations are generally coupled with initial conditions that 

describe the state of the system at time t=0.A very powerful 

technique for solving these problems is that of the Laplace 

transform, which literally transforms the original differential 

equation into an elementary algebraic expression. This latter 

can then simply be transformed once again, into the solution 

of the original problem. This technique is known as the 

“Laplace transform method.” 

 

Basic Definition of Laplace Transform 

If f(t) is defined for t≥0 the (unilateral) Laplace transform 

(Pierre-Simon Laplace) and its inverse are defined by: 

 
Note that if f(t) as then the first integral converges for all 

complex numbers with real part greater than s0, and in the 

second integral we then demand that . 

Whenever the limit exists.When it does, the integral is said to 

converge. If the limit does not exist, the integral is said to 

diverge and there is no Laplace transform defined for f. The 

notation will also be used to denote the Laplace transform of  

f, and the integral is the ordinary Riemann (improper) 

integral. 

Then the one-sided Laplace renovate 

 
Converges enormously and is methodical in the left half 

plane Re(s) <β. 

Under the same state of affairs on g(t) and if β > α the two-

sided Laplace transform. 

 
Converges enormously and is methodical in the vertical strip 

α <<Re(s) < β. 

Now if we let t =- log x and g(-log x) = f (x) then e-st = es 

log x = xs. 

Hence, 

 
So the Mellin makeover of f (x) is the two-sided Laplace 

renovate of g(t) where t = - log x and it converges absolutely 

and is analytic in the vertical strip α <<Re(s) < β. 

 

Now since g(t) = O(e_αt) as t →∞ we obtain f (x) = O(x-α) 

as x →0+. 

 

Also g(t) = O(e_βt) as t →-∞ implies f (x) = O(x-β) as x 

→∞. 

 

Summing out of cradle we contain proved the subsequent 

lemma: 

 

Lemma 1: 

 The conditions f (x) = O(x-α) as x →0+ and f (x) = O(x-β) 

as x →∞ where α< β guarantee that f *(s) exists in the strip 

h{α,β} 

 

Hence monomials xc, including constants do not have Mellin 

transforms. 

Example 1.1 

The function of ƒ(x)= e-x = O(x0) as x→0+ and e-x = O(x-b) 

as x→∞ for any b>0 so that its transform

 is defined and analytic on 

{0,∞} 

 

Example 1.2 

The function ƒ(x)= (ex – 1 )-1 satisfies ƒ(x)= O(x-1) as 

x→O+ and ƒ(x)= O(x-b) for all b>0 as x→∞.Hence ƒ(x) is 

analytic and defined on {1,∞}.we find 

 
We require that Ɍ <(s) > 1 for convergence of the Riemann-

zeta function and we see that this validates the strip {1,∞} on 

which f *(s) is defined and analytic. 

 

Example 1.3 
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The function f (x) = (1 + x)-1 is O(x0) as x →0+ and O(x-1) 

as x →∞. Hence a guaranteed strip of existence for f *(s) is 

{0,1} .Set x = t /1-t.then 

 
We can also evaluate the Mellin transform of f (x) using 

complex analysis. Consider the branch of the function zx-

1/z+1 defined on the slit plane C/[0;∞) by 

 
The values on the bottom edge are obtained from those on the 

top edge by multiplying by the phase factor e2πi(s-1). 

 
 

For  €> 0 small and R > 0 large, we consider the keyhole 

domain D (see Figure 1 in the appendix) consisting of z in 

the slit plane C/[0,∞) satisfying  <IzI< R:f (z) has a pole in D, 

a simple pole at z = -1, with residue 

 

 
 

Hence the residue theorem yields 

 

 
The integral around δD breaks into the sum of 4 integrals. 

 
For the integrals over ƮR and Ʈ€ we have 

 
Since 0 < s < 1 both these integrals vanish as R ! 1 and _ ! 0. 

 
Example 1.4 

Suppose f (x) = (1 + x)-n. Setting t = x/1+x we obtain 

 
Example 1.5 

Suppose f (t) = sin t = i (eit – e-it): Consider the region D as 

in Figure 2 of the appendix.Since e-t ts-1 is analytic in D we 

have by Cauchy‟s theorem: 

 
Letting  €→0 and R →∞we have: 

 
 

Likewise replacing i with -i in the previous equation we 

obtain Combining the two we get 

 
We proceed to look at some functional properties of the 

Mellin transform. 

 

Theorem : 

 Let f (x) be a function whose transform admits the 

fundamental strip 

H{α,β} Let p,µ and v be positive real numbers. Then the 

following relations hold: 
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Proof: 

 
    (ii) Since the Mellin transform is linear this follows 

immediately from (i): 

 
 

We have for example from Theorem 2.1(iv)M[e-x2 ; s] = 

1/2Ʈ(s/2) on <0,∞> with 

f (x) = e-x and ῥ = 2. Wanting to expand our range of Mellin 

transforms we find by differentiation under the integral sign: 

 
For instance the transform of e-x log x is Ʈ(s). If we want to 

transform the derivative of a function integration by parts 

yields: 

 

The term equals 0 since we assume the reason 

why f*(s) exists for s € {α,β}is because

  and    for 

 
 

Thus, 

 
For instance from Example we can derive the Mellin 

transform of f (x) = log(1 + x) 

 

Special Cases 

Laplace Transform Method Solution of Fractional Ordinary 

Differential Equations 

Summary 

Eltayeb. A.M. Yousif, et.al has proposed Laplace transform 

method for solving the 

fractional ordinary differential equations with constant and 

variable coefficients. 

The solutions are expressed in terms of Mittage-Leffller 

functions, and then written in a 

compact simplified form. 

As special case, when the order of the derivative is two the 

result is simplified to that of 

second order equation. 

Findings 

The Laplace transformation method has been successfully 

applied to find an exact 

solution of fractional ordinary differential equations, with 

constant and variable coefficients. 

Some theorems were introduced; also special formulas of 

Mittage-Leffler function were 

derived with their proofs. 

The method was applied in a direct way without using any 

assumptions. 

 The results showed that the Laplace transformation method 

needs small size of 

computations compared to the Adomain decomposition 

method (ADM), variation iteration method (VIM) and 

homotopy perturbation method (HPM). 

It was concluded that the Laplace transformation method is a 

powerful, efficient and reliable tool for the solution of 

fractional linear ordinary differential equations. 

Laplace Substitution Method for Solving Partial Differential 

Equations Involving 

Mixed Partial Derivatives 

Summary 

SujitHandibag, et.al, 2012, has proposed a new method, 

named Laplace substitution 

method (LSM), which was based on Laplace transform. 

This new method with a convenient way to find exact 

solution with less computation as 

compared with Method of Separation of Variables(MSV) 

and Variation iteration method (VIM). 

The proposed method solves linear partial differential 

equations involving mixed partial 

derivatives. 

Findings 

Laplace Substitution Method (LSM) is applicable to solve 

partial differential equations in 

which involves mixed partial derivatives and general linear 

term Ru(x, y) is zero. 

The result of first two examples compared with (MSV) and 

(VIM), yields that these 

methods can be use alternatively for the solution of higher 

order initial value problem in which involves the mixed 

partial derivatives with general linear term Ru(x, y) is zero. 

But the result of example number three yields that (LSM) is 

not applicable for those partial differential equations in 

which R u(x, y) 0.Consequently the (LSM) is promising and 

can be applied for other equations that appearing in various 

scientific fields. 

Applications of Fractional Differential Equations 

Summary 

Mehdi Rahimy, 2010, has considered different definitions of 
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fractional derivatives, 

Some kind of fractional differential equations were also 

studied 

Some of their applications were also given. 

Findings 

First of all, most commonly used definitions of fractional 

derivative and there important 

Properties were reviewed. 

Then some examples about explicit solutions of some 

differential equations were discussed. 

Some applications of fractional differential equations were 

stated viz: 

1. Abel‟s integral equation 

2. Viscoelasticity 

3. Schrödinger equation 

4. Analysis of Fractional Differential Equations 

5. Food Science 

6. Fractional Diffusion Equations 

7. Fractional relaxation equation 

 

IV. CONCLUSION 

In recent decades, it has attracted interest of researches in 

several areas of science. Specially, in the field of physics 

applications of fractional calculus have gained considerable 

popularity. The application of Laplace transform is 

investigated to obtain an exact solution of some linear 

fractional differential equations. Solving some problems 

show that the Laplace transform is a powerful and efficient 

techniques for obtaining analytic solution of linear fractional 

differential equations. 
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