
International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 67

MODIFIED MERGE SORT ALGORITHM

Shubham Saini1, Bhavesh Kasliwal2

1, 2 School of Computer Science and Engineering,

Vellore Institute of Technology
1shubhamsaini@gmail.com

2bhaveshkasliwal@rediffmail.com

Abstract: Given a sequence of N elements a1, a2, a3, …,

aN. The desired output will be a’1, a’2, a’3,…, a’N such

that a’1≤, a’2≤, a’3≤…≤a’N using merge sort. In this

paper, we propose a modification to the existing merge

sort algorithm to sort the given elements when the input

sequence (or a part of it) is in ascending or descending

order in a more efficient way by reducing the number of

comparisons between two sub arrays.

I. INTRODUCTION

Sorting is a fundamental operation, with numerous

applications. Search engines incorporate sorting algorithms

to display the information sorted by the importance of web

page.

Sorting algorithms like Bubble, Selection and Insertion sort

have an O(N2). This limits their application to small number

of elements of only a few thousand data points.

Merge sort is able to re-order the given array elements in

ascending order. It functions on the Divide-and-Conquer

approach. It divides an array into two sub-arrays recursively

until one element is left, and then merges the sorted sub-

arrays into one.

Merge sort is an efficient algorithm that can sort the given

elements in O(NlgN) time. The proposed modification to the

existing algorithm focuses on reducing the number of

comparisons between the left and right sub array elements.

The modification reduces the number of comparisons

significantly in some particular cases that will be discussed in

the later parts of the paper.

In Section 2, the working of the existing merge sort algorithm

is described. In Section 3, the modification to the existing

algorithm followed by its theoretical evaluation in Section 4

and empirical evaluation in Section 5 is discussed. The study

is summarized in Section 6.

Note: Arrays mentioned in this paper are of size N.

II. EXISTING MERGE SORT ALGORITHM

Merge sort works on the Divide-and-Conquer approach as

follows:

a) Divide: Divide an array of size n to be sorted into

two sub-arrays of size n/2 each.

b) Conquer: Sort the two arrays recursively using

merge sort.

c) Combine: Merge the two sorted sub arrays.

Pseudo code:

Input: Array A to be sorted.

At any recursive call, A[p-r] is the array to be divided.

Here, indices p ≤ q ≤ r

Fig. 1. MERGE SORT ALGORITHM (Part 1)

Fig. 2. MERGE SORT ALGORITHM (Part 2)

Result of the above MERGE-SORT function call (Figure 1)

will be array A [p-r] in ascending order.

In the MERGE-SORT function (Figure 1), Line 1 decides

when to stop dividing, i.e. when there is an array of single

element left. Line 2-4 divides the array into two halves. Line

5 merges the two sorted sub arrays into one.

MERGE-SORT(A,p,r)

1 if p <r

2 q ← (r + p)/2

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A,q+1,r)

5 MERGE(A, p, q, r)

MERGE(A, p,q, r)

1 n1←q-p+1

2 n2←r-q

3 create arrays L[1...N1+1] and R[1...N2+1]

4 for i←1 to N1

5 do L[i] ← A[p+i-1]

6 for j ← 1 to n2

7 do R[j] ← A[q+j]

8 L[N1+1] ← ∞

9 R[N2+1] ← ∞

10 i ← 1

11 j ← 1

12 for k ← p to r

13 do if L[i] ≤ R[j]

14 A[k] ← L[i]

15 i ← i+1

16 else A[k] ← R[j]

17 j ← j+1

1shubhamsaini@gmail.com
2bhaveshkasliwal@rediffmail.com

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 68

In MERGE function (Figure 2), Lines 1-2 compute the length

N1 and N2 of sub arrays A[p-q] and A[q+1-r] respectively. In

Lines 3-7, arrays L and R (Left, Right) of lengths of N1+1

and N2+1 respectively are created and the sub arrays A [p-q]

and A [q+1-r] are copied into them. Lines 8-9 put sentinels at

the end of arrays L and R. In Lines 12-17, the elements at

which i and j are pointing to are compared and the smaller

one is appended to the array A [p-r]. Finally, array A [p-r] has

elements in ascending order.

Fig. 3. Dividing Procedure

i=1 j=1 i=1 j=2

L R L R

 A A

 k=1 k=2

Fig. 4.1. MERGE PROCEDURE

i=1 j=1

 L R

 A

 a) k=1

i=1 j=2

 L R

 A A

 b) k=2

 i=2 j=2

 L R

A

 c) k=3

 i=3 j=2

 L R

 A

d) k=4

 Fig. 4.2. MERGE PROCEDURE

(The array indices being pointed to by the counters i and j

are shown in green. The parts of the main array A shown in

yellow contain elements in sorted order.)

III. MODIFIED MERGE SORT ALGORITHM

In a merge sort algorithm, the best case occurs when the

two sub arrays are already in ascending order (Figure 5).

In this case, each element of the left sub array is

compared to the first element of the right sub array. As

all the elements of the left sub array are smaller than the

smallest element (first element) of the right sub array,

they are copied to the main array element by element at

each iterative step. Now, the right sub array is appended

to the main array without any further comparisons. In this

case, the number of comparisons is half the size of the

main array.

 1stcom 3rd comp Copy 6, 7, 8, 9

 2nd comp 4th comp directly

Fig. 5. BEST CASE OF MERGE SORT

In the proposed modification to the existing merge sort

algorithm, the fact that the two sub arrays to be merged are

already sorted is being used. Thus the best case can be

identified if the last element of left sub array is less than first

element of right sub array. If this case arises at any recursive

call, the two arrays will be appended to the main array without

any further comparisons.

3 2 5 1

3 2 5 1

3 2 5 1

3 2 ∞ ∞ 3 2 ∞ ∞

2 3 2

3 2 ∞

5 1 ∞

 1

3 2 ∞

2 1

5 1 ∞

3 2 ∞

2 1 3

5 1 ∞

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

3 2 ∞

2 1 3

5

5 1 ∞

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 69

i=1 i=n1 j=1 j=n2

 L R

A

 p q r

If L(n1) < R(1)

APPEND L and R TO A

Fig. 6. MERGING USING MODIFIED ALGORITHM

Another special case in which the modified algorithm will

function as efficiently as in the best case is when the input

from the user (complete or a part of it) is in descending order.

Here, at the time of merging, there will be two sub arrays in

which the first element of left sub array is greater than last

element of right sub array. (Figure 7)

i=1 i=n1 j=1 j=n2

 L R

 A

 p q r

If L(1) > R(n2)

APPEND R and L TO A

Fig. 7. SORTING AN ARRAY IN DESCENDING ORDER

Fig. 8. Merge sort function

The MERGE-SORT function will remain the same since

there is no difference in the way the arrays are to be divided.

The modification is in the MERGE function, which is as

follows:

In Figure 8, Lines 12 and 17 identify the cases in which the

modified algorithm will be invoked. Lines 13-16 and 18-21

append the two arrays to the main arrays without any further

comparisons. That is, Lines 12-21 comprise the modified

merging procedure. If neither of the two cases arise, the

existing merging method is put into use, given by lines 22-28.

IV. THEORITICAL EVALUATION

The MERGE function has been modified to reduce the

number of comparisons between array elements. No change

has been introduced in the MERGE-SORT function.

Therefore the running time (T (n)) of the modified MERGE

function for three particular cases has been analyzed as

follows.

Case 1: Merging two sub arrays each of size n when the last

element of left sub array is less than first element of right sub

array (Figure 6). Lines 1-16 in Figure 8 will be executed in

this case. The Time/Cost for this case will be 8n+11.

Fig. 9. MODIFIED MERGE FUNCTION

Case 2: Merging two sub arrays each of size n when the first

element of left sub array is greater than the last element of

right sub array (Figure 7). Here, Lines 1-12 and Lines 17-21

will be executed. As a result, the Time/Cost factor will be

1 2 3 4 6 7 8 9

1 2 3 4 6 7 8 9

6 7 8 9 1 2 3 4

1 2 3 4 6 7 8 9

MERGE-SORT(A,p,r)

1 if p <r

2 q ← (r + p)/2

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A,q+1,r)

5 MERGE(A, p, q, r)

MERGE(A, p, q, r)

1 n1←q-p+1

2 n2←r-q

3 create arrays L[1...N1+1] and R[1...N2+1]

4 for i←1 to N1

5 do L[i] ← A[p+i-1]

6 for j ← 1 to n2

7 do R[j] ← A[q+j]

8 L[N1+1] ← ∞

9 R[N2+1] ← ∞

10 i ← 1

11 j ← 1

12 if (L[N1] < R[1])

13 for b ← p to q

14 A[b] ← L[i]

15 A[q+i] ← R[i]

16 i ← i+1

17 else if (L[1] > R[N2])

18 for b ← p to q

19 A[b] ← R[i]

20 A[q+i] ← L[i]

21 i ← i+1

22 else

23 for k ← p to r

24 if L[i] ≤ R[j]

25 A[k] ← L[i]

26 i ← i+1

27 else A[k] ← R[j]

28 j ← j+1

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 70

8n+12.

Case 3: Merging two sub arrays each of size n when the array

elements are in any random order. Here, Lines 1-12, 13 and

22-28 are executed. The Time/Cost factor will be 12n+12.

The Time/Cost factor for the existing merge function remains

the same for all the cases and is equal to 12n+10. The

difference between time/cost of the modified algorithm in

case 3 and the existing algorithm is just a constant factor of

2.

Table. 1. Original v/s Modified Merge sort algorithm

V. EMPERICAL EVALUATION

The modified algorithm has been compared with the existing

merge sort algorithm for the number of comparisons using the

modified merge sort algorithm and the number of

comparisons using the existing merge sort algorithm. This is

achieved by generating some random integers and finding out

the number of times two elements are compared in each case

for both the algorithms.

Results are as follows:

Main array size = 128

Number of comparisons using existing algorithm = 896

Using modified algorithm:

x y z

75 828 903

73 836 909

77 812 889

76 818 894

76 822 898

77 814 891

73 832 905

79 796 875

72 846 918

80 798 878

Table. 2. Results

x = number of comparisons using modified merging

procedure (Lines 12-21 in Figure 8)

y = number of comparisons using existing merging procedure

in the modified algorithm (Lines 22-28 in Figure 8)

z = total number of comparisons using modified algorithm

x, y and z were found by executing programs of existing and

modified merge sort algorithms in the g++ compiler.

Average of z = 896

Number of comparisons using existing algorithm = 896

In the best case, when the main array input is in ascending or

descending order:

Total number of comparisons = 127 using modified algorithm

Number of comparisons using existing algorithm = 896

Difference = 769

i.e. around 86% comparisons have been reduced.

VI. CONCLUSIONS

In this paper a modification to the existing merge sort

algorithm was introduced. Although the overall time

complexity remained the same (O (NlgN)), the number of

comparisons between the array elements in some particular

cases has been reduced.

The empirical analyses showed that even when we sort a list

of numbers in random order, the modified algorithm works

almost as efficiently as the existing algorithm. However, in

the best case, the number of comparisons has been reduced

drastically (by nearly 86%).

The algorithm that helps reducing the total work done by a

compiler is considered to be a more efficient one. The

application of the modified algorithm is same as the existing

merge sort algorithm.

REFERENCES:

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest and Clifford Stein. Introduction to Algorithms, Third

Edition. MIT Press, 2009.

[2] Song Qin. Merge Sort Algorithm. Florida Institute of

Technology.http://www.cs.fit.edu/~pkc/classes/writing/hw1

3/song.pdf

[3] Dr. Mattox Beckman. Fast Sorting. Illinois Institute of

Technology.

http://dijkstra.cs.iit.edu/media/sites/static/cs331/period/fast-

sorting/slides.pdf

 Original Merge Sort Modified Algorithm

Case 1 12n + 10 8n + 11

Case 2 12n + 10 8n + 12

Case 3 12n + 10 12n + 12

