
International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 80

HIGH SPEED PIPELINED DATA ENCRYPTION STANDARD

WITH ERROR DETECTION AND CORRECTION
Praveenkumar1, Pradeep2 S R, Anupkumar3

1, 2, 3Department of VLSI and Embedded Systems

VTU RC-Gulbarga
1praveenkumarrc@yahoo.in

2pradeepsr09@gmail.com
3anupkumar.v.j@gmail.com

Abstract: The selective application of technological and

related procedural safeguards is an important

responsibility of every organization or industry in

providing adequate security to its electronic data systems.

The DES (algorithm) was developed at IBM and adopted

by the National Bureau of Standards, and has successfully

withstood all the attacks published so far in the open

literature. This project specifies a cryptographic

algorithm in order to protect sensitive data, increasing

the speed by pipelining the architecture by A ZERO-

DELAY DE-SYNCHRONIZATION MODEL. We also

develop a error detection and correction mechanism with

help of HAMMING C O D E S . To maintain the data

confidentially and to protect it, we need to convert the

data into different form that differs completely from input

and then transmit it. That data has to be again decrypted

(got back) at the receiver. The algorithm defines the steps

needed to encrypt t h e data and also to decrypt it. This

design is programmed in Verilog. By implementing t r i p l e

DES, the security can be increased.

I. INTRODUCTION

Security is a prevalent concern in information and data systems

of all types. One means of providing security in communications

is through encryption. Encryption is the process of converting

plain text unhidden to a cryptic text hidden by encryption

algorithm like DES algorithm to secure data against data thieves.

This process has another part where cryptic text needs to be

decrypted by the same reverse algorithm on the other end to be

understood in fig 1.

Fig. 1. The Simple block diagram of DES

There are two main types of cryptography in use today

symmetric or secret key cryptography and asymmetric or

public key cryptography. Secret key cryptography goes back to

at least Egyptian times and is of concern here. It involves the

use of only one key which is used for both encryption and

decryption (hence the use of the term symmetric). It is necessary

for security purposes that the secret key never be revealed.

II. THE DATA ENCRYPTION STANDARD (DES)

a. Brief history of DES

DES was the result of a research project set up by International

Business Machines (IBM) Corporation in the late 1960s which

resulted in a cipher known as LUCIFER. In the early 1970s it

was decided to commercialize LUCIFER and a number of

significant changes were introduced. IBM was not the only one

involved in these changes as they sought technical advice from

the National Security Agency (NSA) (other outside consultants

were involved but it is likely that the NSA were the major

contributors from a technical point of view). The altered version

of LUCIFER was put forward as a proposal for the new national

encryption standard requested by the National Bureau of

Standards (NBS). It was finally adopted in 1977 as the Data

Encryption Standard - DES [1].

b. Inner workings of DES

DES (and most of the other major symmetric ciphers) is based

on a cipher known as the Feistel block cipher. This was a block

cipher developed by the IBM cryptography researcher Horst

Feistel in the early 70s. It consists of a number of rounds where

each round contains bit-shuffling, non-linear substitutions (S-

boxes) and exclusive OR operations. Most symmetric encryption

schemes today are based on this structure (known as a feistel

network). As with most encryption schemes, DES expects two

inputs- the plaintext to be encrypted and the secret key[3].

The manner in which the plaintext is accepted, and the key

arrangement used for encryption and decryption, both determine

the type of cipher it is. DES is therefore a symmetric, 64 bit

block cipher as it uses the same key for both encryption and

decryption and only operates on 64 bit blocks of data at a time

(be they plaintext or cipher text). The key size used is 56 bits,

however a 64 bit (or eight-byte) key is actually input. The least

mailto:praveenkumarrc@yahoo.in
mailto:praveenkumarrc@yahoo.in
mailto:pradeepsr09@gmail.com
mailto:anupkumar.v.j@gmail.com
mailto:anupkumar.v.j@gmail.com
mailto:anupkumar.v.j@gmail.com
mailto:anupkumar.v.j@gmail.com

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 81

significant bit of each byte is either used for parity (odd for DES)

or set arbitrarily and does not increase the security in any way. All

blocks are numbered from left to right which makes the eight bit

of each byte the parity bit. Once a plain-text message is received

to be encrypted, it is arranged into 64 bit blocks required for input.

If the number of bits in the message is not evenly divisible by 64,

then the last block will be padded. Multiple permutations and

substitutions are incorporated throughout in order to increase the

difficulty of performing a cryptanalysis on the cipher. However,

it is generally accepted that the initial and final permutations offer

little or no contribution to the security of DES and in fact

some software implementations omit them (although strictly

speaking these are not DES as they do not adhere to the

standard). The algorithm is designed to encipher and decipher

blocks of data consisting of 64 bits under control of a 64- bit

key. Deciphering must be accomplished by using the same key as

for enciphering, but with the schedule of addressing the key

bits altered so that the deciphering process is the reverse of the

enciphering process. A block to be enciphered is subjected to an

initial permutation IP, then to a complex key- dependent

computation and finally to a permutation which is the inverse of

the initial permutation IP-1. The key-dependent computation can

be simply defined in terms of a function f, called the cipher

function, and a function KS, called the key schedule. A

description of the computation is given first, along with details as

to how the algorithm is used for encipherment. Next, the use of

the algorithm for decipherment is described. Finally, a definition

of the cipher function f is given in terms of primitive functions

which are called the selection functions Si and the permutation

function P.

Fig. 2. Eciphering Computation

1. Overall structure

The following notation is convenient: Given two blocks L and

R of bits, LR denotes the block consisting of the bits of L

followed by the bits of R. Since concatenation is associative,

B1B2...B8, for example, denotes the block consisting of the bits

of B1 followed by the bits of B2...followed by the bits of B8.

Fig. 3. Permutation tables used in DES.

2 . Enciphering

Initially the key is passed through a per mutation function (PC1

- defined in fig 3 b). For each of the 16 iterations, a sub key

(Ki) is produced by a combination of a left circular shift and a

permutation (PC2 - defined in fig 3 c) which is the same for

each iteration. However, the resulting sub key is different for each

iteration because of repeated shifts. The 64 bits of the input

block to be enciphered are first subjected to the permutation,

called the initial permutation IP of fig 4 a of DES key schedule.

That is the permuted input has

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 82

Fig. 4. Initial Permutation
bit 58 of the input as its first bit, bit 50 as its second bit, and so

on with bit 7 as its last bit. The permuted input block is then

the input to a complex key-dependent computation described

above table. The output of that computation, called the preoutput,

is then subjected to the permutation which is the inverse of the

initial permutation that is as shown in Table (b) of DES key

schedule. The computation which uses the permuted input block

as its input to produce the preoutput block consists, but for a final

interchanges of blocks, of 16 iterations of a calculation that is

described below in terms of the cipher function f which operates

on two blocks, one of 32 bits and one of 48bits, and produces a

block of 32 bits. Let the 64 bits of the input block to an iteration

consists of a 32 bit block L followed by a 32 bit block R. using

the notation defined in the instruction, the input block is then LR.

Let K be a block of 48 bits chosen from the 64-bit key. Then the

output L’R’ of iteration with input LR is defined by:

1) L’ = R R’ = L f (R, K) where d e n o t e s bit-by-bit addition

modulo

2) As remarked before, the input of the first iteration of the

calculation is the permuted input block. If L’R’ is the output of

the 16th iteration then R’L’ is the preoutput block. At each

iteration a different block K of key bits is chosen from the 64-

bit key designated by KEY. With more notations we can describe

the iterations of the computation in more detail. Let KS be a

function which takes an integer n in the range from

1 to 16 and a 64-bit block KEY as input and yields as output a

48-bit block Kn which is a permuted selection of bits from KEY.

That is (2) Kn = KS (n,KEY) with Kn determined by the bits in

48 distinct bit positions of KEY. KS is called the key schedule

because the block K used in the n’th iteration of (1) is the block

Kn determined by (2). As before, let the permuted input block be

LR. Finally, let L() and R() be respectively L and R and let Ln

and Rn be respectively L’ and R’ of (1) when L and R a re

respectively Ln-1 and Rn-1 and K is Kn; that is, when n is in

the range from 1 to 16, (3) Ln = Rn-1 Rn = Ln-1 f(Rn-1,Kn)

The preoutput block is then R16L16. The key schedule KS of the

algorithm is described in detail. The key schedule produces the 16

Kn which are required for the algorithm.

3. Deciphering

The permutation IP-1 applied to the pre- output block is the

inverse of the initial permutation IP applied to the input. Further,

from (1) it follows that:

4) R = L’ L= R’ f(L’,K) Consequently, to decipher it is only

necessary to apply the very same algorithm to an enciphered

message block, taking care that at each iteration of the

computation the same block of key bits K is used during

decipherment as was used during the encipherment of the block.

Using the notation of the previous section, this can be expressed

by the equations:

5) Rn-1 = Ln Ln-1 = Rn f(Ln,Kn) where now R16L16 is the

permuted input block for the deciphering calculation and L0R0 is

the preoutput block. That is, for the decipherment calculation

with R16L16 as the permuted input, K16 is used in the first

iteration, K15 in the second, and so on, with K1 used in the 16th

iteration. The Cipher Function f A sketch of the calculation of

f(R, K) is given in Figure of S box Let E denote a function which

takes a block of 32 bits as input and yields a block of 48 bits

as output. Let E be such that the 48 bits of its output, written

as 8 blocks of 6 bits each, are obtained by selecting the bits in

its inputs in order according to the table Expansion

permutation(c). Thus the first three bits of E(R) are the bits in

positions 32, 1 and 2 of R while the last 2 bits of E(R) are the

bits in positions 32 and 1. Each of the unique selection functions

S1,S2,...,S8, takes a 6-bit block as input and yields a 4-bit block

as output and is illustrated by using a table containing the

recommended S1,S2,...,S8 : figure? If S1 is the function

defined in this table and B is a block of 6 bits, then S1(B)

is determined as follows: The

Fig. 5. Calculation of f(R, K)

first and last bits of B represent in base 2 a number in the

range 0 to 3. Let that number be i. The middle 4 bits of B

represent in base 2 a number in the range 0 to 15. Let that

number be j. Look up in the table the number in the i’th row

and j’th column. It is a number in the range 0 to 15 and is

uniquely represented by a 4 bit block. That block is the output

S1 (B) of S1 for the input B. For example, for input 011011

the row is 01, that is row 1, and the column is determined

by 1101, that is column 13. In row 1 column 13 appears 5

so that the output is 0101. Selection functions S1, S2..., S8 of

the algorithm appear as shown in the above table of S-box.

The permutation function P yields a 32-bit output from a 32-

bit input by permuting the bits of the input block. Such a

function is defined by the table 2.1. The output P(L) for the

function P defined by this table is obtained from the input L

by taking the 16th bit of L as the first bit of P(L), the 7th bit

as the second bit of P(L), and so on until the 25th bit of L is

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 83

taken as the 32nd bit of P(L). The permutation function P of

the algorithm is repeated. Now let S1,...,S8 be eight distinct

selection functions, let P be the permutation function and let E

be the function defined above.

6) B1B2...B8 = K E (R)

7) P (S1 (B1) S2 (B2)...S8 (B8))

Thus K E(R) is first divided into the 8 blocks as indicated in

(6). Then each Bi is taken as an input to Si and the 8 blocks S1

(B1), S2 (B2), S8 (B8) of 4 bits each are consolidated into a

single block of 32 bits which forms the input to P. The output (7)

is then the output of the function f for the inputs R and K.

III. KEY SCHEDULING

For example, C3 and D3 are obtained from C2 and D2,

respectively, by two left shifts, and C16 and D16 are obtained

from C15 and D15, respectively, by one left shift. In all cases, by

a single left shift is meant a rotation of the bits one place to the

left, so that after one left shift the bits in the 28 positions are the

bits that were previously in positions 2, 3,..., 28, 1[5].

IV. OTHER POINTS OF NOTE

Having looked at DES in some detail a brief look at some other

points is in order. These include decryption, modes of operation,

security etc.

Fig. 6. S – box details

a. Modes of operation

The DES algorithm is a basic building block for providing data

security. To apply DES in a variety of applications, five modes

of operation have been defined which cover virtually all

variation of use of the algorithm and these are shown in table

b. DES decryption

The decryption process with DES is essentially the same as the

encryption process and is as follows: Use the cipher text as the

input to the DES algorithm but use the keys Ki in reverse order.

That is, use K16 on the first iteration, K15 on the second until K1

which is used on the 16th and last iteration.

Fig. 7. Key scheduler calculation

Fig. 8. Iteration numbers with Numbers of shifts

c. Avalanche effect

A desirable property of any encryption algorithm is that a

small change in either plaintext or key should produce

significant changes in the cipher text. DES exhibits a strong

avalanche effect. Table 2.5 illustrates this.

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 84

V. PIPELINING THE DES ALGORITHM

Pipelining is wildly use method in large design for speed

Enhancement. The iterative nature of the DES algorithm makes it

ideally suited to pipelining and that can be 4, 6, 8 or 16 stages.

The DES algorithm implementation presented in this paper is

based on the ECB mode with 16 stages pipelining. Although the

ECB mode is less secure than other modes of operation, it is

commonly used and its operation can be pipelined[9] as shown

in fig 9.

VI. SKEW CORE KEY-SCHEDULING

In the implementation of the DES algorithm key schedule

employed here same as above stated. The direct mapping [6] of

given key in required sub-keys but both ways using only wiring

resources, So this part will be executed very fast and no

optimizations would have any stage pipelined DES design and

key-scheduling, it is necessary to control the time at which the

sub-keys are effect. For maintaining proper synchronization in

16-available to each function f block. This is accomplished by the

addition of a skew [6] that delays the individual sub keys by the

required amount. The skew consists of 48 bits array of register

shown in Fig 10. An outline of this key scheduling

Fig. 9. DES modes of operation

Method is provided in Fig.11, since the DES algorithm consists

of 16 rounds, the skew core is set to loop 15 times since a register

is not required to delay the first sub-key. The number of resister

in each sub-key path same as plaintext passes the no. of register

before reaching respective round as shown in Fig 11. It is

noticeable that design of these registers same as used in Round

blocks.

VII. A ZERO-DELAY DE-SYNCHRONIZATION

MODEL

The de-synchronization model presented in this section aims at

the substitution of the global clock by a set of asynchronous

controllers that guarantee an equivalent behavior. The model

assume that the circuit has combinational blocks (CL) and

registers implemented with D flip-flops (FF), all of them

working with the same clock edge (e.g. rising in Figure

14(a)). A. Steps in the de-synchronization method.

Fig. 10. Avalanche effect a small change in the plaintext

produces a significant change in the ciphertext

The de-Synchronization method proceeds in three steps: 1)

Conversion of the flip-flop-based synchronous circuit into

latch-based one D-flip-flop is conceptually composed of master-

slave latches. To perform de-synchronization, this internal

structure is explicitly revealed (see Figure 14(b)) to: a) decouple

local clocks for master and slave latches (in a D-flip-flop they

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 85

are both derived from the same clock) and b) optionally improve

performance through retiming, i.e. by moving latches across

combinational logic. The conversion of a flip-flop-based circuit

into a latch based one is not specific to the de-synchronization

framework only. It is known to give an improvement in

performance for synchronous systems [9] and, for this reason, it

has a value by itself. 2) Generation of matched delays for the

combinational logic (denoted by rounded rectangles in Figure

14(b)). Each matched delay must be greater than or equal to the

delay of the critical path of the corresponding combinational

block. Each matched delay serves as a completion detector for

the corresponding combinational block. 3) Implementation of the

local controllers. This is the main topic of this section.

VIII. ERROR CALCULATIONS

If exactly one bit error appears at the output state of the S-box and

also in inverse S-box the presented fault detection scheme is

able to detect it and error converges is about 100 percent. This is

because in this case the error indication flag of the corresponding

block alarms the fault. However due to the technological

const0raints, single stuck –at fault may not be applicable for a

mugger to gain more information. Thus, multiple bits will

actually be flipped and hence multiple stuck-at errors are also

considered in this paper covering both natural faults and fault

attacks. For the calculation of the fault coverage for the multiple

errors, Pi defines as the possibility of error detection in block in

Figs 16 and 17. Then, the probability of not detecting the errors

in block is (1-pi). For arbitrarily distributed errors in the S-box

(respectively inverse S-box), this probability for each block is

Independent of those of other blocks. Therefore, one can derive

the equation for the error coverage of the randomly distributed

errors as Where S is the set of the block numbers where the faults

are injected. For randomly distributed errors, the error coverage

for each block is Pi.

IX. HAMMING CODE

When data is transmitted from one location to another there is

always the possibility that an error may occur. There are a number

of reliable codes that can be used to encode data so that the error

can be detected and corrected. With this project you will explore

a simple error detection-correction technique called a Hamming

Code. A Hamming Code can be used to detect and correct one-bit

change in an encoded code word. This approach can be useful as

a change in a single bit is more probable than a change in two bits

or more bits.

Fig. 11. DES pipeline Architecture

Fig. 12. Register arrays

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 86

Fig. 13. Skew core Key-scheduling in DES design.

A. Calculating the Hamming Code

The key to the Hamming Code is the use of extra parity bits to

allow the identification of a single error. Create the code word as

follows: 1.Mark all bit positions that are powers of two as parity

bits. (positions 1, 2, 4, 8, 16, 32, 64, etc.) 2. All other bit positions

are for the data to be encoded. (positions 3, 5, 6, 7, 9, 10, 11,

12, 13, 14, 15, 17, etc.) 3. Each parity bit calculates the parity

for some of the bits in the code word. The position of the parity

bit determines the sequence of bits that it alternately checks and

skips .Position 1: check 1 bit, skip 1 bit, check 1 bit, skip 1 bit,

etc. (1, 3,5,7,9,11,13,15...) Position 2: check 2 bits, skip 2 bits,

check 2 bits, skip 2 bits, etc. (2,3,6,7,10,11,14,15,...) Position 4:

check 4 bits, skip 4 bits, check 4 bits, skip 4 bits, etc.

(4,5,6,7,12,13,14,15,20,21,22,23,...) Position 8: check 8 bits, skip

8 bits, check 8 bits, skip 8 bits, etc. (8-15,24-31,40-47,...)

Position 16: check 16 bits, skip 16 bits, check 16 bits, skip 16 bits,

etc. (16-31,48-63,80-95,...) Position 32: check 32 bits, skip 32

bits, check 32 bits, skip 32 bits, etc. (32-63,96-127,160-

191,...etc. 4.Set a parity bit to 1 if the total number of ones in the

positions it checks is odd. Set a parity bit to 0 if the total number

of ones in the positions it checks is even.

Fig. 14. (a) Synchronous circuit, (b) de-synchronized circuit.

X. APPLICATIONS

DES is utilized in various applications and environments.

Cryptographic services are required across variety of platforms in

a wide range of applications such as secure access to private

networks, electronic commerce and health care. The security of

conventional encryptions depends on several factors. DES can

be used in intensive cryptographic computer application [4].

Applications such as electronic commerce, internet. bankings

and electronic fund transfer, secure and private com- munication

require better performance cryptographic system. The pipelined

DES consumes less hardware resource than fully pipelined

DES does, and provides more throughput than practical DES.

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 87

 Fig. 16. Transmitter section

 Fig. 17. Receiver section

The Triple DES consumes more hardware and also the frequency

of operation is low compared to straight DES. But the basic

advantage of using triple DES is that it is more secured than that

of DES and pipelined DES.

XI. RESULT

The encryption and decryption results are as shown below

Fig. 18. Encryption

 Fig. 19. Decryption

 Fig.20. Both encryption and Decryption

REFERENCES:

[1] Data encryption standard (DES), National Bureau of

Standards (U.S.), Federal Information Processing Standards

Publication 46, National Technical Information Service ,

Springfield, VA, Apr. 1977.

[2] J. Orlin Grabbe. The DES Algorithm.

[3] Schneier, B. Applied Cryptography, Protocols, Algorithms,

and Source Code , IEEE Int Symp circuits syst (ISCAS), 2005

pp.592-595,2003.

[4] Ahmed Zure Shameri, DES Cryptographic System for

Information Security , IEEE Trans circuits syst vol.53,

no.11,1165-1169, 2002.

[5] Kaps J, Fast DES implementations for FPGAs and its

application to a Universal key-search machine. ,. In: Proc. 5th

Annual Workshop on selected areas in cryptography.

[6] McLoone, M., McCanny, J, High-performance FPGA

implementation of DES using a novel method for implementing

the key schedule.

[7] J Wilcox, D., Pierson, L., Robertson, P., Witzke, E.L., Gass,

K, A DES basic suitable for network encryption at 10 Gbs and

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 88

beyond ,.. In: CHESS 99, LNCS 1717 (1999) 3748

[8] Wong, K., Wark, M., Dawson, E, A Single-Chip FPGA

Implementation of the Data Encryption Standard (des) Algorithm,

In: IEEE Globecom Communication Conf., Sydney, Australia

(2002) 827832.

[9] Biham, E A fast new DES implementation in software, Proc.

4th Int.Workshop on Fast software Encryption, FSE 97, Haifa,

Israel, Jan. 1997 (Springer-Verlag, 1997), pp. 260 271.

[10] Wong, K., Wark, M., Dawson, E..: A Single- Chip FPGA

Implementation of the Data Encryption Standard (des) Algorithm.

, In: IEEE Globecom Communication Conf., Sydney, Australia

(1998) 827832.

[11] J Wilcox, D., Pierson, L., Robertson, P., Witzke, E.L., Gass,

K.: A DES asic suitable for network encryption at 10 Gbs and

beyond, In: CHESS 99, LNCS 1717 (1999) 3748..

[12] Patterson, C. High Performance DES Encryption in Virtex

FPGAs using Jbits. In: Field-programmable custom computing

machines, In: FCCM00, Napa Valley, CA, USA, IEEE Computer.

Soc., CA, USA, 2000 (2000) 11312.

[13] Wong, K., Wark, M., Dawson, E. .: A Single- Chip FPGA

Implementation of the Data Encryption Standard (des) Algorithm,

In: IEEE Globecom Communication Conf., Sydney, Australia

(1998) 827832.

