
International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 94

‘C’ OR ‘C++’: MAKING OWN HEADER FILES

Munani Anilkumar L.1, Shah Pratik A.2
1Department of Computer Engineering,

BBIT, Vallabh Vidyanagar,
Gujarat, India

Abstract: A header file is a file which contains C function

declarations and macro definition. In this paper we intend

to discuss header files, purpose, how to create our own

header file. First we will introduce the header files in short

and later we will draw focus on introduction, creation and

syntax, and uses of functions that declared in specific

header file.

Keywords: – C Header files and its creation

I. INTRODUCTION

A header file is a file with extension .h which contain C function

declarations and macro definitions and to be shared source

files. You request the use of a header file in your program by

including it, with the C preprocessing directive #include like you

have seen inclusion of stdio.h header file, which comes along

with your compiler. Including a header file is equal to copying

the content of the header file but we do not do it because it will

be very much error-prone and it is not good idea to copy the

content of header file in the source files, especially if we have

multiple source file comprising our program. In simple practice

in C or C++ programs is that we keep all the constants, macros,

system wide global variables and function prototypes in header

files and include that file wherever it is required.

II. PURPOSES OF HEADER FILES

There are mainly two purposes of header files.

 System header files declare the interfaces to parts of

the operating system. You include them in your

program to supply the definitions and declarations

you need to invoke system calls and libraries.

 Your own header files contain declarations for

interfaces between the source files of your program.

Each time you have a group of related declarations

and macro definitions all or most of which are

needed in several different source files, it is good

idea to create a header file for them.

Including a header file produces the same results as copying

the header file into each source file that need it. Such copying

would be time-consuming and error-prone. With a header file

the related declarations appear in only one place. If they need

to be changed, they can be changed in one place, and

programs include the header file will automatically use the

new version when next recompiled. The header file

eliminates the labour of finding and changing all the copies

as well as the risk that failure to find one copy will result in

inconsistencies within a program.

III. MAKE YOUR OWN HEADER FILES

A well-organized C program has good choice of module, and

properly constructed header files that make easy to

understand and access the functionality in module.
The following rules summarizes how to setup your header

and source files for the greatest clarity and compilation

convenience.

Rule 1: Each module with its .h and .c file should

correspond to a clear piece of functionality.

Conceptually, a module is group of declarations and functions

can be developed and maintained separately from other

modules and perhaps even reused in entirely different

projects. Don’t force together into a module things that will

be used or maintained separately, and don’t separate things

that will always be used and maintained together. The

Standard Library modules math.h and string.h are good

examples of clearly distinct modules.

Rule 2: Always use “include guards” in a header file.

The most compact form uses #ifndef. Choose a guard symbol

based on the header file name, since these symbols are easy

to think up and the header file names are almost always

unique in a project.

Follow the convention of making the symbol all-caps. For

example “Arithmatic_op.h” would start with:

 #ifndef ARITHMATIC_OP_H

 #define ARITHMATIC_OP_H

and end with:

#endif

Note: Do not start the guard symbol with an underscore

leading underscore names are reserved for internal use by the

C implementation – the preprocessor, compiler, and Standard

Library – breaking this rule can cause unnecessary and very

puzzling errors. The complete rule for leading underscores is

rather complex; but if you follow this simple form you'll stay

out of trouble.

Rule 3: All of the declarations needed to use a module

must appear in its header file, and this file is always used

to access the module.

Thus including the header file provides all the information

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 95

necessary for code using the module to compile and link

correctly. Furthermore, if module P needs to use module L’s

functionality, it should always include "L.h", and never

contain hard-coded declarations for structure or functions that

appear in module L. Why? If module L is changed, but you

forget to change the hard-coded declarations in module P,

module P could easily fail with subtle run-time errors that

won’t be detected by either the compiler or linker. This is a

violation of the “One Definition Rule” which C compilers and

linkers can’t detect. Always referring to a module through its

header file ensures that only a single set of declarations needs

to be maintained, and helps enforce the One-Definition Rule.

Rule 4: The header file contains only declarations, and is

included by the .c file for the module.

Put only structure type declarations, function prototypes, and

global variable extern declarations, in the .h file; put the

function definitions and global variable definitions and

initializations in the .c file. The .c file for a module must

include the .h file; the compiler can detect discrepancies

between the two, and thus help ensure consistency.

Rule 5: Set up program-wide global variables with an

extern declaration in the header file, and a defining

declaration in the .c file.

For global variables that will be known throughout the

program, place an extern declaration in the .h file.

i.e. extern int product_number;

The other modules include only the .h file. The .c file for the

module must include this same .h file, and near the beginning

of the file, a defining declaration should appear - this

declaration both defines and initializes the global variables.

i.e. product_number=0;

Of course, some other value besides zero could be used as the

initial value, and static/global variables are initialized to zero

by default, but initializing explicitly to zero is customary

because it marks this declaration as the defining declaration,

meaning that this is the unique point of definition. Note that

different C compilers and linkers will allow other ways of

setting up global variables, but this is the accepted C++

method for defining global variables and it works for C as

well to ensure that the global variables obey the One

Definition Rule.

Rule 6: Keep a module’s internal declarations out of the

header file.

Sometimes a module uses strictly internal components that

are not supposed to be accessed by other modules. If you need

structure declarations, global variables, or functions that are

used only in the code in the .c file, put their definitions or

declarations near the top of the .c file and do not mention them

in the .h file. Furthermore, declare global and functions static

in the .c file to give them internal linkage. This way, other

modules do not and cannot know about these declarations,

global, or functions that are internal to the module. The

internal linkage resulting from the static declaration will

enable the linker to help you enforce your design decision.

Rule 7: Every header file L.h should include every other

header file that L.h requires to compile correctly.

If another structure type P is used as a member variable of a

structure type L, then you must include L.h in P.h so that the

compiler knows how large the L member is. Do not include

header files that only the .c file code needs. E.g.<math.h> is

usually needed only by the function definitions include it in

.c file, not in the .h file.

Rule 8: If an incomplete declaration of a structure type L

will do, use it instead of including its header L.h.

If a struct type L appears only as a pointer type in a structure

declaration or its functions, and the code in the header file

does not attempt to access any member variables of L, then

you should not include L.h, but instead make an incomplete

declaration of L (also called a "forward" declaration) before

the first use of L. Here is an example in which a structure type

Thing refers to L by a pointer:

struct L; /* incomplete ("forward") declaration */

struct Thing

{

 int i;

struct L* m_ptr;

 };

The compiler will be happy to accept code containing

pointers to an incompletely known structure type, basically

because pointers always have the same size and

characteristics regardless of what they are pointing to.

Typically, only the code in the .c file needs to access the

members (or size) of L, so the .c file will include "L.h". This

is a powerful technique for encapsulating a module and

decoupling it from other modules.

Rule 9: The content of a header file should compile

correctly by itself.

A header file should explicitly include or forward declare

everything it needs. Failure to observe this rule can result in

very puzzling errors when other header files or includes in

other files are changed. Check your headers by compiling (by

itself) a file1.c that contains nothing more than include "L.h".

It should not produce any compilation errors. If it does, then

something has been left out something else needs to be

included or forward declared. Test all the headers in a project

by starting at the bottom of the include hierarchy and work

your way to the top. This will help to find and eliminate any

accidental dependencies between header files.

Rule 10: The P.c file should first include its P.h file, and

then any other headers required for its code.

Always include P.h first to avoid hiding anything it is missing

that gets included by other .h files. Then, if P's

implementation code uses L, explicitly include L.h in P.c, so

that P.c is not dependent on L.h accidentally being included

somewhere else.

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 96

There is no clear consensus on whether P.c should also

include header files that P.h has already included. Two

suggestions:

 If the L.h file is a logically unavoidable requirement

for the declaration in P.h to compile, then including

it in P.c is redundant, since it is guaranteed to be

included by P.h. So it is OK to not #include L.h in

P.c.

 Always including L.h in P.c is a way of making it

clear to the reader that we are using L, and helps

make sure that L’s declarations are available even

if the contents of P.h changes due to the design

changes. E.g. maybe we had a struct Thing member

of a struct at first, then got rid of it, but still used

Things in the implementation code.

Rule 11: Never include P.c file for any reason.

Sometimes you need to bring in a bunch of code that really

should to be shared between .c files for ease of maintenance,

so you put it in a file by itself. Because the code does not

consist of "normal" declarations or definitions, you know that

putting it in a .h file is misleading, so you are tempted to call

it a “.c” file instead, and then write include "program1.c". But

this causes instant confusion for other programmers and

interferes with convenience in using IDEs, because .c files are

normally separately compiled, so you have to somehow tell

people not to compile this one .c file out of all the others.

Furthermore, if they miss this hard-to-document point, they

get really confused because compiling this sort of odd file

typically produces a million error messages, making people

think something mysterious is fundamentally wrong with

your code or how they installed it.

Conclusion: If it can’t be treated like a normal header or

source file, don't name it like one. If you think you need to do

something like this, first make sure that there isn't a more

normal way to share the code (such as simply creating another

module). If not, then name the special include file with a

different extension like ".inc" or ".inl".

IV. SYNTAX AND EXAMPLE

a. With using “include guards”

Now let’s talk about how to make your own header files in

C and C++.

Let i have to make header file “anil.h”

STEP 1: Open turbo C editor and create new file and write

following syntax in it.

Syntax:

#indef<space> HEADER_FILE_NAME_H

#define<space> HEADER_FILE_NAME_H

// define your functions directly

ReturnType FucntionName(Aruguments)

 {

 //Implementation code here

 }

 #endif

 Example:

 #indef ANIL_H

 #define ANIL_H

//now let write function definition to find factorial of a given

number.

 int fact(int num)

{

 int i,fact=1;

 for (i=num;i>=1;i--)

 {

 f=f*i;

 }

 return (f);

 }

STEP 2: Save this file as ANIL.H in INCLUDE folder of TC.

STEP 3: Now create new file and use that header file which

you have created.

Example:

#include<anil.h>

#include<stdio.h>

#include<conio.h>

void main()

{

int ans;

clrscr();

ans=fact(5);

printf(“Your factorial is:%d”, ans);

getch();

}

b. Without using “include guards”

If you want to create header file without using “include

guards” then you can create, but when u create your source

file then you have to write include statement as following.

i.e. #include “header file” //use double quate for header file.

If you want to print something then you can also include

stdio.h header file while you creating your own header file.

Let see one example of it.

Suppose i want to create a header file which supports one

function to calculate restaurant bill.

#include<stdio.h>

void totalBill(int food_cost, int tax, int tip)

{

int result;

result = food_cost + tax + tip;

printf("Total bill is %d \n", result);

}

Save this file as restaurant.h and include that file in your

source file.

International Journal For Technological Research In Engineering

Vol. 1, Issue. 1, Sep – 2013 ISSN (Online): 2347 - 4718

 97

#include<stdio.h>

#include"restaurant.h" //own header file

void main()

{

int food_cost, tax, tip, bill;

food_cost = 100;

tax = 15;

tip = 10;

totalBill(food_cost,tax,tip); // function created in restaurant.h

getch();

}

If we execute this program totalBill function directly print bill

amount on output screen.

V. INCLUDE DIRECTIVE

Both user and system header files are included using the

preprocessing directive ‘include’. It has two variant.

#include <file>

This variant is used for system header files. It searches for a

file in a standard list of system directories.

i.e. C:\TC\INCLUDE

#include “file”

This variant is used for header files of your own program. It

searches for a file named file first in the directory containing

the current file, then in the quote directories and then the same

directories used for <file>.

The argument of ‘#include’ whether delimited with quote

marks or angle brackets, behave like a string constant in that

comments are not recognized, and macros names are not

expanded.

VI. CONCLUSION

Well, the main reason would be for separating the interface

from the implementation. The header declares "what" a class

(or whatever is being implemented) will do, while the cpp file

defines "how" it will perform those features.

This reduces dependencies so that code that uses the header

doesn't necessarily need to know all the details of the

implementation and any other classes/headers needed only

for that. This will reduce compilation times and also the

amount of recompilation needed when something in the

implementation changes.

REFERENCES:

[1] http://stackoverflow.com/questions/7109964/creating-

your-own-header-file-in-c

[2] http://www.programmingspark.com/2012/12/create-

your-own-header-file-in-c.html

[3] http://c-programming-language tut.blogspot.

in/2011/12/how-to-create-header-file-in-c-language.html>

[4] http://www.tutorialspoint.com/cprogramming/c_

header_files.html

[5] http://gcc.gnu.org/onlinedocs/cpp/Header-Files.html>

http://stackoverflow.com/questions/7109964/creating-your-own-header-file-in-c
http://stackoverflow.com/questions/7109964/creating-your-own-header-file-in-c
http://c-programming-language/
http://www.tutorialspoint.com/cprogramming/c_

