
International Journal For Technological Research In Engineering
Volume 1, Issue 4, December - 2013 ISSN (Online) : 2347 - 4718

PREDICTING QUALITY MEASURES OF COMPOSITE WEB SERVICES

Karthikeyan. J1, Suresh Kumar. M2

1PG Scholar, Computer and Communication Engineering
2Associate Professor, Department of Information Technology

Sri Sairam Engineering College, Chennai

Abstract: Now-a-days the web services are uprising tech-
nology which appeals lots of attention from both academic
and industry. The quality of service has been one of the major
challenges in the web services. If the web services become op-
erational then the service providers with Service Level Agree-
ment (SLA) need to consider and monitor with respect to the
quality of web services and SLA. The most important factor is
that to monitor and prevent the SLA intrusion in the compos-
ite web services. In the existing work the adaptation is done
only at the instance level of the composition, for each level
of composition the adaptation is done in each instance. Then
the aggregated SLO’s are defined over the number of instances
which are out of scope and also the adaptation is not consid-
ered as permanent. In this PERvent (prediction and preven-
tion based on event monitoring) framework is not supported
for large number of adaptation action per the checkpoint be-
cause it is fully based on the number of checkpoints, and also
it supports limited structural adaptation in the composition.
The proposed work is to exclude these drawbacks by introduc-
ing the framework called Ranking QoS based dynamic compo-
sition (RQoSDC) framework for monitoring the SLA param-
eter as well as monitoring Service Quality (QOS) Parameter
for composite web services. The efficient optimizing algorithm
used to reduce the cost for the service provider and also we
will discuss the experimental results to prove how these ap-
proaches to monitor the Quality of Service (QOS) parameters
for the composed web services as well as SLA and to reduce
the cost for composite web service providers.

Keywords: Composite web services, Monitoring, Quality
of Services (QoS), Service level Agreement (SLA).

I. INTRODUCTION

A Web service is a software system designed to support inter-
operable machine-to-machine interaction over a network. It
has an interface described in a machine-process able format
(specifically WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML se-
rialization in conjunction with other Web-related standards
the Web services architecture is based upon the interactions
between three primary roles: service provider, service registry,
and service requestor. These roles interact using publish, find,
and bind operations. The service provider is the business that
provides access to the Web service and publishes the service
description in a service registry. The service requestor finds
the service description in a service registry and uses the infor-

Figure 1: Web services architecture

Figure 2: Web service composition

mation in the description to bind to a service. A logical view of
the Web services architecture is shown in Figure 1. In this view
of the Web services architecture, the service registry provides a
centralized location for storing service descriptions. A UDDI
registry is an example of this type of service registry.

A service-level agreement (SLA) is a contract between a net-
work service provider and a customer that specifies, usually in
measurable terms, what services the network service provider
will furnish. Many Internet service providers (ISP) s provide
their customers with an SLA. More recently, IS (Information Ser-
vices or Information System) departments in major enterprises
have adopted the idea of writing a service level agreement so
that services for their customers (users in other departments
within the enterprise) can be measured, justified, and perhaps
compared with those of outsourcing network providers.

Web service composition is able to compose services into
composite services, which in turn can be composed into even
bigger composite services. This is illustrated by Figure 2.

Where web services W1 and W2 are composed into a com-
posite service W5, and web services W3 and W4 are composed
into a composite service W6. W5 and W6 are in turn composed
into W7.

www.ijtre.com Copyright 2013.All rights reserved. 158



International Journal For Technological Research In Engineering
Volume 1, Issue 4, December - 2013 ISSN (Online) : 2347 - 4718

Figure 3: Production planning application

II. MOTIVATION

In this paper, we use the scenario depicted in Fig. 1 to motivate
and explain our approach. This scenario considers the case
of "IPLAN"- Production Planning application (Figure 1) is a
product that processes the allocation of all supplies that the
business takes in and ensures that they are taken to the proper
place and used at the proper time to manufacture products in
order to satisfy the demand of the customer. IPLAN tracks the
creation of products from beginning to end. It coordinates the
activities such as: It takes in the order placed by the customer,
analyzes the materials required to create the product, predicts
the number of days required to manufacture the product, cost
and maintenance and quality assurance.

III. WEB SERVICE COMPSITION

Figure 4: Framework
In this paper proposed a framework called Ranking QoS-

based framework. In this framework includes with ontology’s
for improving the web semantic discovery and also provide
the best service according to the customer interest which is
based on the parameter cost and time and provide the reliable
response to the customer based on the selection. This frame-
work processes the services based on customer specification
and providing the best response to the user requirement by the
ontology concepts.
In this framework, we used a monitoring mechanism based on

dynamic execution of web service and continually we calculate
and rank the service based on the customer’s response. And
analysis the QoS parameter and display as output of the web
service utilization; this report comes from the monitoring agent,
getting feedback from the user which utilizes the service and
service provider. Then the report stores in the database for
future use.

In this framework consists of following components: cost
based optimizer, SLA violation predictor, control unit, re-
quest/response manager, QoS manager and managing services.
The architecture of the framework is shown in the figure 4.
Those components are discussed in detail in following section.

a) Control units
Control unit is responsible for all the functional parts of
the framework. Mainly this control unit is responsible
for managing the communication between the each com-
ponent in the framework. It will manage request gets
from the client and replies to the customer based on their
requirements. And also it manages storage of the final
result of customer responses in the database.

b) Request/Response manager
This component based on the input and output. The
requests are the inputs, it depends upon the nature of
the customer and the responses are the output which
depends upon the user request with the recognized result
and requested services for the customer. The request and
response include the following requirements

(a) Requests from providers in order to register in
web services and gets a response from the service
providers.

(b) Requests sent from the consumer, which based upon
requests or the feedback of the used service by the
customer and response to the user request.

(c) The request will be sent to the agent side to update
the QoS parameters which include the service like
response time, accessibility and availability of the
service, etc.,

c) SLA violation predictor
SLA violation predictor is responsible for predicting the
service which is not assigned to that particular customer.
SLA agreement services are stored in the database for
each customer which may helpful to predict the violation
against the customer. It may help not to pay the penalties
for the SLA violations. In the SLA violation is used to esti-
mate the historical execution of each service which is used
to produce the numerical estimation of SLO parameter at
runtime.

d) QoS predictor
QoS predicator is mainly used for estimating the QoS
parameter for web service such as service response time,
performance, reliability, integrity, availability and accessi-
bility of services Which is calculated by the mathematical
expressions which is discussed in later sections. It is used
to estimate the quality parameter based on cost or time.

www.ijtre.com Copyright 2013.All rights reserved. 159



International Journal For Technological Research In Engineering
Volume 1, Issue 4, December - 2013 ISSN (Online) : 2347 - 4718

And also stores the result in the QoS database in the
framework.

e) Cost based optimizer
Cost based optimizer is used to adaption and minimize
the cost for the service providers. The optimizer make
decision depends upon the service generated prediction
and the SLA agreement which is also helpful for SLA
violation predictor. The generated prediction are present
at the runtime adaption which is gets optimal cost for the
service provider in dynamic composition of web services.

f) Ontology manager
Ontology Manager is responsible for managing common
and domain-specific ontology’s used by provider and
requester. It is extracted domain-specific service related
QoS and functional properties of advertising Web service
that published by the provider. This component merges
these ontology’s with general ontology’s (i.e. WordNet,
Yago, Wikipedia...) and creates new generalized ontology.
And also this component will rank and propose the sorted
list of semantic web services that provide user preferences
by using this ontology’s.

g) QoS Database
QoS Database is used to store the QoS parameters of web
services which are maintained by two kinds of table. One
is used for store the QoS related information published by
web service providers and the other one is used for stored
the dynamic modified QoS parameter of the Web service,
which is based on the monitoring agent and the user
feedback. The each QoS parameters of the web service are
identified by the unique identification number called UIDs.
Each UID have the details about the service response
time, performance, reliability, integrity, availability and
accessibility of services

IV. Estimating QoS parameter

The QoS based selection of best services for simple and com-
plex task requires continuously updating the published QoS
information. QoS information can be updated only by moni-
toring the QoS parameters performed by trusted third party
brokers. To perform monitoring and evaluation of QoS param-
eters associated with Web services, access rate are measured
in this section that can help service consumer and provider to
pay little attention towards the QoS parameters during service
discovery and registration. These measured parameters will be
discussed in the following subsection.

A. Access Rate Parameter

Access rate is an accessibility parameter that requires continu-
ous monitoring of Web services by broker to provide updated
QoS information. Access rate is directly related with the avail-
ability from the host location. Before publishing a new service
on the server, the broker monitors the particular service by
invoking it in own environment for a specific time period. The
purpose of monitoring the Web service is to evaluate the access

rate parameter value and other QoS parameter values, so that
the consumer can always access the Web service with updated
QoS information.

Access rate can be defined as the rate of total number of Web
service request requested by the service consumer through
broker interface. It is the sum of successfully invoked Web
services, failed Web services and bounced Web services without
invocation. These three types of request can be represented by
success access rate i.e., (S(R)), failure access rate i.e., (F(R)) and
bounce access rate i.e., (B(R)). Access rate is denoted by R and
it can be calculated as follows:

R = S(R) + F(R) + B(R) (1)

1. Bounce Access Rate
It is the percentage of visiting and leaving without execut-
ing a particular web service by service consumer through
broker interface.
To accurately measure the bounce access rate i.e., B(R),
the total number of bounces for a Web service (b) will
be divided by the number of times the Web service was
called for execution (N) in any reason. It is denoted by
B(Ar) and it can be calculated as follows:

B(Ar) =
total number o f bounced Web services
f ailed Web services + success f ully invoked

Web services + bounced Web services

B(R) = b/N (2)

Therefore, the percentage of bounce access rate B(Ar) can
be calculated as:

B(R) = b/N ∗ 100 (3)

2. Failure Access Rate
It is the ratio between the number of times a web service
request failed (f) to perform its operation for any reason
and the number of times the Web service was called for
execution (N), i.e. unsuccessful executions/called for exe-
cution. It is the relationship between the number of times
the Web service failed after the execution and the number
of times the web service is successfully invoked. It is
denoted by F(R) and can be calculated using the following
formula:

F(Ar) =
f ailed Web services

f ailed Web services + success f ully invoked
Web services + bounced Web services

Therefore, the percentage of failure access rate F(Ar) can
be calculated as:

F(R) = f /N ∗ 100 (4)

3. Successful Access Rate
It is the ratio between the numbers of times a web service
is successfully (s) invoked to perform its operation and the
number of times the Web service was called for execution

www.ijtre.com Copyright 2013.All rights reserved. 160



International Journal For Technological Research In Engineering
Volume 1, Issue 4, December - 2013 ISSN (Online) : 2347 - 4718

(N), i.e. successful executions/called for execution. It is
the relationship between the number of times the web
service is successfully invoked and the number of times
the Web service was called for execution. It is denoted by
S(R) and can be calculated using the following formula:

S(R) = s/N ∗ 100 (5)

B. Reliability

Reliability is the probability in which the provider correctly
answers a request within a maximum expected time. It is
measured as the number of success request divided by the
number of request. It is denoted by Wr and can be expressed
as follows:

Wr = S(R) (6)

C. Availability

The probability that the web service is in its expected func-
tional condition and therefore capable of being used in a stated
environment. Availability deals with the duration of uptime
for Web service operations. It is often expressed in terms of
up-time and down-time of web service. Up-time refers to a
capability to perform the task and downtime refers to not be-
ing able to perform the task. It is dented by WA and can be
expressed as follows:

WA = S(R)/N (7)

D. Response Time

Response time is the total time duration spent between the
request (Qsc, Qsb) and response (Psbr, Psp) for a particular Web
service from the side of service consumer broker and service
provider. It is denoted by WRT and can be calculated as:

WRT = (Qsc + Qsb)− (Psb + Psp) (8)

E. Effective Service Access Time

The total time required to process the consumer request for
particular service through broker. It is denoted by TESA. The
broker access time (TBA) and service access time (TSA) can
be evaluated through broker for TESA. TBA and TSA can be
calculated as:
TBA = Qsc– Psb
TSA = (Qsc+ Qsb) - (Psb + Psp)
Therefore,

TESA = (F(R) ∗ TBA) + (F(R) ∗ TSA) (9)

V. Algorithm for evaluating QoS
Parameters

An algorithm for monitoring and evaluating of different non-
functional parameters and overall quality score at broker’s

operating environment is presented in this section. With the
help of proposed algorithm, the broker can monitor the non-
functional parameters of each Web service before publishing
on host location and the consumers of service can retrieve up
to date Web services with QoS information. In this algorithm,
the invoke and monitor procedure invokes the particular web
service for a specified time period for finding the number of suc-
cessful request (success_request), failed request(failed_request)
and bounced request (bounced_request). The obtained values
of success_request, failed_request and bounced_request are fur-
ther be used to construct the values of other non- functional pa-
rameters. total_request is the count of total number of request
arrived for a particular Web service. success_rate, failed_rate
and bounced_rate are the rate of percentage of successful, failed
and bounced request. The update_old_QoS_dataset updates
the old QoS data with the new QoS data after every invocation.

The algorithm for the monitoring and evaluation of
proposed QoS parameters performed at brokerâĂŹs operating
environment is as follows:

Procedure: MONITORING_WEB_SERVICE (WebService-
Name, WebServiceUrl, TotalService).

Given WebServiceName is the name of Web service to be
invoked and WebServiceUrl is the destination URL where the
service is actually located. TotalService is the total number of
QoS parameters used for the evaluation of average score of all
QoS parameters.

Input: WebServiceName, WebServiceUrl, TotalService
Output: successful_request,failed_request,bounced_request,

total_request, success_rate, fail_rate, bounced_rate, reliability,
availability, response_time.

[Initialize]
successful_request = 0
failed_request = 0
bounced_request = 0
[Retrieve old successful request, failed request and bounced
request from Web service QoS dataset]
Read&Store(WebServiceName,old_succ_request,
old_failed_request,old_bounced_request)
[Invoke the specified Web service]
If invoked_success = true then
successful_request = successful_request + 1
Return
If invoked_failed = true then
failed_request = failed_request + 1
Return
If invoked_bounced = true then
bounced_request = bounced_request + 1
Return
[Evaluate other parameter]
tot_request =
success_request + failed_request + bounced_request
s_rate = success_req / tot_req
f_rate = failed_req / tot_req
b_rate = bounced_req / tot_req
reliability = s_rate

www.ijtre.com Copyright 2013.All rights reserved. 161



International Journal For Technological Research In Engineering
Volume 1, Issue 4, December - 2013 ISSN (Online) : 2347 - 4718

availability = s_rate / (s_rate + f_rate)
response_time = avg (resp_time)
update_old_QoS_Dataset (success_request, failed_request,
bounced_request, tot_request, success_rate, failed_rate,
bounced_rate, reliability, availability, response_time)
Print availability, reliability, response_time
[Finished]
Return

Procedure: EVALUATE_WS(WSName)
Given WSName is the name of Web service, WSUrl is the

destination url of Web service and N is the number of QoS
parameters. Procedure Evaluate_WS shows the list of similar
Web services that fulfills the required functionality. This
procedure evaluates the QoS parameters for each service s in
service list service_list.

Input: Web service name
Output: Web service with QoS Read N.

[Select Web service from service_list for QoS evaluation]
For each service s in service_list
Begin
CALL MONITOR_WEB_SERVICE(s)
End

The proposed algorithm can be helpful in evaluating the
different non-functional parameter values through access rate
and provide the aggregated QoS score of each Web service
during service discovery and publish. The obtained quality
score can be used for ranking and selecting the appropriate
service for composition which is having highest score. In spite
of the advantage, the proposed algorithm is unable to consider
the non-functional parameter values of different units.

VI. EXPERIMENTAL RESULTS

The performance of the QoS parameter can be analyzed by the
set similar web service function stored in the database. These
web services are collected from the different services providers.
The databases for the services are created in MySQL, which
includes several services with their ID, name or keyword, and
URLs. These web services are several time for a period of time.
All the parameters of the web services are tested initially to
determine the total rate, success rate, bounce rate, availabil-
ity, reliability and response time based upon the request and
response of the each web services.

An interface for web services is developed as show in fig-
ure 5. This is implementation for monitoring the composed
web services and evaluates this service for the estimation of
quality parameters using the evolution mechanism. Based on
the customer needs, it estimates quality of web service. If
the customer chooses the time or cost as important, then the
mechanism fetches the time or cost as keyword for those partic-
ular services which calculate the parameter based on customer
needs time.

Figure 5: Interface for web services

VII. CONCLUSION

Evaluation of QoS parameters of a composed web service can
be achieved by fair computation of QoS of every component
service for providing trustable and best Web service. The
overall performance of the composition can be affected by in-
voking a service with low quality. In this paper, access rate is
related to accessibility and reputation that can help in assur-
ing the quality of the selected Web services for composition.
An algorithm is also presented for monitoring and evaluation
of proposed parameters which is performed by trusted third
party broker after registering a Web services. With the help
of these parameters, the broker is able to evaluate the services
according to their quality score which used for the service
consumers always access the best Web services with updated
QoS information. As future work, it would be ideal to make
our monitoring system work at runtime with the Web service
execution engine. In this way, the provider could take statistical
results and correct any violations very quickly and without
any mediators. Another interesting direction is to focus on
the corrective actions after a violation is detected. This can be
performed by another management service that would take
as input the condition evaluation results and then, if appro-
priate, would try to make the service compliant with the SLA
document. All this procedure would be ideal to be distributed.
And also included a new framework based on ontology to
enhance and optimize semantic web service discovery without
changing their existing specification and implementation of
standard UDDI interface using a broker. It is allowed to the
client-side software can transparently connect. By using ontol-
ogy concepts, the scope of QoS property is extended and can
make more accurate and recallable results. We intend to solve
the problem of optimization of cost for the service provider
based on the SLA agreement.

References

[1] P. Leitner, W. Hummer S. Dustdar. Cost-based optimiza-
tion of service compositions. IEEE Transactions On Services
Computing, 6(2), 2013.

www.ijtre.com Copyright 2013.All rights reserved. 162



International Journal For Technological Research In Engineering
Volume 1, Issue 4, December - 2013 ISSN (Online) : 2347 - 4718

[2] P. Leitner, S. Dustdar, B. Wetzstein, F. Leymann. Cost-based
prevention of violations of service level agreements in com-
posed services using self-adaptation. IEEE Transactions on
Services Computing (TSC), 2012.

[3] Maya Rathore and Ugrasen Suman. Evaluating qos param-
eters for ranking web service. IEEE International Advance
Computing Conference (IACC), 7(8):1267–1274, 2012.

[4] L. Bodenstaff, A. Wombacher, M. Reichert, and M.C. Jaeger.
Analyzing impact factors on composite services. In Proced-
ing IEEE International Conference Services Computing, 2009.

[5] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S.
Dustdar, and F. Leymann. Runtime prediction of service
level agreement violations for composite services. In Pro-
ceding Third Workshop Non- Functional Properties and SLA
Management in Service-Oriented Computing (NFPSLAM-SOC
’09), 2009.

[6] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.
Monitoring, prediction and prevention of sla violations in
composite services. In Proceding IEEE International Confer-
ence Web Services (ICWS ’10)), 2010.

[7] L. Juszczyk and S. Dustdar. Script-based generation of
dynamic testbeds for soa. In Proceding IEEE International
Conference Web Services (ICWS ’10), 2010.

[8] R. Jurca, B. Faltings, and W. Binder. Reliable qos monitoring
based on client feedback. In Proceding 16th International
Conference World Wide Web (WWW ’07), 2007.

[9] Y. Zhang, M. Panahi, and K. J. Lin. Service process compo-
sition with qos and monitoring agent cost parameters. In
Proceding IEEE 10th Conference E-Commerce Technology and
the Fifth IEEE Conference Enterprise Computing, E-Commerce
and E-Services, 2008.

www.ijtre.com Copyright 2013.All rights reserved. 163


	 INTRODUCTION
	MOTIVATION
	WEB SERVICE COMPSITION
	Estimating QoS parameter
	Access Rate Parameter
	Reliability
	Availability
	Response Time
	Effective Service Access Time

	Algorithm for evaluating QoS Parameters
	EXPERIMENTAL RESULTS
	CONCLUSION

