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Abstract: The ability to quantitatively survey the global
behaviour of transcriptomes has been a key milestone in the
field of systems biology, enabled by the advent of DNA mi-
croarrays. While this approach has literally transformed our
vision and approach to cellular physiology, microarray tech-
nology has always been limited by the requirement to decide,
a priori, what regions of the genome to examine. While very
high density tiling arrays have reduced this limitation for sim-
pler organisms, it remains an obstacle for larger, more com-
plex, eukaryotic genomes. The recent development of "next-
generation" massively parallel sequencing (MPS) technolo-
gies by companies such as Roche (454 GS FLX), Illumina
(Genome Analyser II), and ABI (AB SOLiD) has completely
transformed the way in which quantitative transcriptomics
can be done. These new technologies have reduced both the
cost-per-reaction and time required by orders of magnitude,
making the use of sequencing a cost-effective option for many
experimental approaches.
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I. INTRODUCTION

Deep transcriptome sequencing (RNA-Seq) with next gener-
ation sequencing (NGS) technologies is providing unprece-
dented opportunities for researchers to probe the transcrip-
tomes of many species [1-5]. An important goal in these studies
is to assess the extent of alternative splicing (AS), a process
that increases transcriptome and proteome diversity, and plays
a key role in regulating gene expression and protein function
[6,7]. Although it is inexpensive and easy to obtain whole
transcriptome data using RNA-Seq, one limitation has been the
lack of versatile methods to analyze these data. Consequently,
there is an increasing demand for methods that can use the
short reads produced in these studies to predict patterns of AS.
The sequences produced by NGS methods have characteristics
that complicate the task of identifying the mRNA transcripts
represented in a sample. A sequencing read may consist of
fewer than 40 nucleotides, making it difficult to identify a
unique origin within a reference sequence. In addition, NGS
base-call error rates tend to increase with read length, raising
the chance of a mismatch when aligning a read to a reference
sequence [8]. These ambiguities are exacerbated by the pres-
ence of paralogous genes that can give rise to reads that align
well in multiple locations. Much of the work on analyzing NGS
reads has focused on aligning reads within exonic regions, and
many methods exist for the problem of aligning reads without

gaps-for example, MAQ [9], PASS [10] and BowTie [11]. Reads
that span splice junctions introduce additional challenges. A
splice junction may occur anywhere within a short read, so
the read may have just a few bases on one side of a junction.
Such a short sequence may align in multiple locations, making
it difficult to identify its true origin. One can use heuristics
to restrict the number of candidate locations: for example,
by establishing limits for permissible intron lengths, or by fo-
cusing on locations that are bounded by canonical GT-AG or
GCAG splice-site dimers. Several spliced alignment algorithms
exist that use these and other approaches to identify unique
alignments for spliced reads [12-17]. The first studies that
used RNA-Seq data to predict AS focused on exon-skipping
events, the most prevalent form of AS in mammals (see, for
example, [1,18-21]). To identify splice junctions recapitulated
in short read data, these studies used exon sequences flanking
annotated splice sites to produce a database of splice junction
sequences. Using novel combinations of known acceptor and
donor sites, researchers can create a database that consists of
both known and putative splice junction sequences. RNA-
Seq reads that align to these putative sequences then provide
evidence for novel splicing events.

II. SAMPLE PREPARATION

Given the variety of current technical approaches (many of
which may be obsolete before this article is published), a pre-
cise step-by-step protocol would not be particularly practical
for a methodology paper. Instead, this article will focus on the
key elements of the procedure which are common to all tech-
nologies, and discuss the factors which should be considered
when planning such experiments.

A. Amount Requirements

Because the RNA-seq approach is entirely based on the gen-
eral principles of DNA sequencing, the methodology should
be applicable to any organism, subject to the availability of a
sufficient amount of RNA. It is worth noting that while pub-
lished information on the performance of these technologies
in high/low GC content genomes is scarce, anecdotally, they
do not appear to show any significant bias across a fairly wide
spread of GC content (30-70%),suggesting that RNA from most
organisms would be suitable.
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B. RNA Removal

One of the principal technical hurdles to overcome with RNA-
seq is the fact that the vast majority of RNA (>90%) present
in cells consists of ribosomal RNA (rRNA). As such, the bulk
of the total RNA is not informative as to the true diversity
of the transcriptome present in the remaining RNA. In order
to avoid wasting effort in re-sequencing the same ribosomal
RNA millions of times, several techniques exist to focus the
sequencing effort on the non-ribosomal portion.

C. Priming

Following enrichment, the resulting mRNA must be primed for
the reverse transcription reaction using either random primers
oroligo dT primers. The advantage of using oligo dT (with or
without prior mRNA enrichment) is that the majority of cDNA
produced should be polyadenylated mRNA, hence more of
the sequence obtained should be informative (non-ribosomal).
The significant disadvantage of the use of oligo dT primers
is that the reverse enzyme will fall off of the template at a
characteristic rate, resulting in a bias towards the 30 end of
transcripts. For long mRNAs, this bias can be pronounced,
resulting in an under representation (or worse, absence) of the
extreme 50 end of the transcript in the data.

D. Maintaining Strand Specific Information

An additional consideration in the process of creating the
double-stranded cDNA for sequencing is to maintain strand
specific information for the RNA. The importance of this consid-
eration will obviously vary depending on the organism being
studied, but in more complex genomes (such as mouse and
human) where there is clear evidence for wide spread antisense
transcription strand specific information should be considered
a clear requisite for comprehensive RNA-seq studies.

III. METHODS

A. RNA-Seq Reads Mapping

The first step after obtaining the RNA-Seq reads data is to
map the short reads back to the reference genome. For RNA-
Seq data on human samples, paper uses the human genome
data from the UCSC website (http://genome.ucsc.edu) as the
reference genome. For DNA reads, several mapping algo-
rithms have been developed to map them back to the genome,
and several software packages have been published, such as
BFAST [14], Bowtie [15], and MAQ [16]. For RNA-Seq data,
reads come from part of genome rather than the whole. Some
post-transcriptional processing of RNAs like splicing in eu-
karyotes introduces RNA sequences that are not from any
single location of the genome, but rather from junctions of
distant parts. These features make the task of RNA-Seq reads
mapping different and more challenging than DNA reads
mapping. There are several software packages available for
RNA Seq reads mapping, such as TopHat [17], Splice Map
[18], and Map Splice [19]. Paper chose TopHat (version 1.1.1)

(http://tophat.cbcb.umd.edu/) in its protocol. It uses the same
core algorithm of Bowtie that is one of the fastest algorithms
for aligning short reads and is also memory-efficient. It in-
dexes the human genome with a Burrows-Wheeler index [20]
to make the algorithm efficient [15]. It can also identify junc-
tion reads that come from spliced exons. It is one of the most
widely used tools for RNA-Seq mapping that does not rely
on given annotations. In the mapping, a certain number of
mismatched nucleotides are allowed as there may be errors in
the sequencing data and also there may be polymorphisms in
RNA sequences. In our experiments reported in this paper,
we allowed for up to 2 mismatches in each alignment. After
mapping RNA-Seq reads back to the reference genome, we
get the following information for each read: whether it can be
mapped to any particular location on the reference genome,
which chromosome it is mapped to and the mapping coordi-
nate on the chromosome, whether it is uniquely mapped or has
multiple mapping locations, how many mismatch nucleotides
are found in the mapping, etc. All these results would be
written in one of the standard formats including SAM, BAM
[21], BED or GTF. The information about file formats can be
found at http://genome.ucsc.edu/FAQ/FAQformat.html. Fig-
ure 1 gives an example of the SAM format we used in our
experiments.

Figure 1: Mapped Result in SAM Format

Here we list these fields in row. Row 1 to row 12 is a read
record and row 14 to row 25 is another one. These fields are:
read name, bitwise flag contained the information about the
read and its mapping result, chromosome, 1-based leftmost
position in plus strand, mapping quality, extended CIGAR
string (here are two popular types: 50 M means read length is
50 bp, 33M757N17M means it is a junction read combined with
a 33 bp and a 17 bp fragment, distance between their mapped
position is 757 bp), mate reference sequence ("=" means mate
one were mapped in the same chromosome, "*" means there
is not read mated with it), 1-based leftmost mate position in
plus strand, distance between two mate reads (0 indicated that
there was not mated read), sequence, quality of sequencing of
each nucleotide (ASCII-33 format), and optional fields.)[28].
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B. Strategy for Discovering Novel Transcripts

RNA-Seq reads are random samples from transcribed genomic
regions. To identify the regions that are transcribed, method
merge mapped reads into longer transcription fragments if
reads are overlapping or the spacing of two neighboring reads
are less than a given threshold. We call the genomic region
formed in this way as "transfrag". The next step is to iden-
tify which of these transfrags are from known genes. In this
paper, article get the genome annotation from the UCSC web-
site. There are three major types of annotations for the human
genome: RefSeq, Ensemble, and Gencode. RefSeq is a database
constructed by the National Center for Biotechnology Informa-
tion (NCBI) [22]. It provides a complete collection of validated
human genes. Ensemble annotation came from the Ensemble
project [23] and Gencode annotation was built by ENCODE
(the encyclopedia of DNA elements) [24]. These two annota-
tions also include some predicted genes. We extracted the 5’
location and 3’ location of each annotated gene with all three
types of annotations, and formed the table of genomic regions
corresponding to known genes. All transfrags are checked with
these regions, and those that overlap with any gene region are
regarded as transcripts from known genes. Those transfrags
that do not overlap with any of the known gene regions are
regarded potential novel transcripts. Some of them contain
very few reads and may be due to sequencing noise or tran-
scription noise. This method can set a threshold to exclude
those transfrags. We can also use some extra criteria to select
transfrags according to their length and distance from known
genes as putative novel transcripts for further investigations.
Following the random sampling model, the number of reads
that are from a known gene region or a transfrag is affected
by the expression level (abundance of the RNA transcript), the
length of the region, and the sequencing depth (or the total
number of reads obtained on the whole sample). We adopted
the RPKM method to estimate the expression level of a gene
or of a potential novel transcript. RPKM represents reads per
kilo bases per million reads [29] and is the most widely used
estimation for gene expression. After calculating the expression
of transfrags, if the study involves two or more samples, we
can detect differentially expressed transfrags with DEGseq, a
software tool we developed earlier [25]. After finding some
potential novel transcripts with high expression or differential
expression between compared samples, we can use the UCSC
Genome Browser [26] or visualization tools like integrative ge-
nomics viewer (IGV, http://www.broadinstitute.org/igv) [27]
to further investigate the details of the read distribution.

IV. COMPARISON BETWEEN PASTA AND
OTHER TOOLS ON SIMULATION BASED

As a first test of the performance of PASTA, we compared its
ability to detect known splice junctions against TopHat. We
generated four simulated datasets of 50nt single-ended RNA-
Seq reads from mouse transcripts appearing in ENSEMBL
gene annotations, corresponding to average depths of coverage
ranging from 1 to 8 reads per nucleotide, and we introduced

random sequencing errors at a frequency of 1/1000 basepairs
and Single Nucleotide Polymorphism (SNP) at a frequency of
5/1000 basepairs. The results show that PASTA consistently
exhibits a lower false negative rate than TopHat, especially
at low coverage level. Sensitivity is consistently higher than
TopHat (on average, 20% to 40% higher), especially for tran-
scripts expressed at a low level. PASTA is therefore well-suited
for identifying "rare" splicing events, reducing the risk of miss-
ing splicing events critical for AS analysis[1]. This indicates
that the use of PASTA may lead to a reduction in sequencing
costs, for example by multiplexing more samples in the same
run, since it is able to produce reliable results even at low
sequencing depths.

V. TRANSCRIPT RECONSTRUCTION

Defining a precise map of all transcripts and isoforms that are
expressed in a particular sample requires the assembly of these
reads or read alignments into transcription units. Collectively,
we refer to this process as transcriptome reconstruction. Tran-
scriptome reconstruction is a difficult computational task for
three main reasons. Several methods exist to reconstruct the
transcriptome, and they fall into two main classes: ’genome-
guided’ and ’genomeindependent’ (Fig. 2). Genome-guided
methods rely on a reference genome to first map all the reads
to the genome and then assemble overlapping reads into tran-
scripts.

Genome-Guided Reconstruction
Existing genome-guided methods can be classified in
two main categories: "exon identification" and "genome-
guided assembly" approaches. Exon identification meth-
ods such as G.mor.se were developed early when reads
were short ( 36 bases) and few aligned to exon-exon
junctions. Genome-guided assembly methods such as
Cufflinks and Scripture28 have been developed. These
methods use spliced reads directly to reconstruct the tran-
scriptome. Scripture initially transforms the genome into
a graph topology, which represents all possible connec-
tions of bases in the transcriptome either when they occur
consecutively or when they are connected by a spliced
read[30].

Genome-Independent Reconstruction
Rather than mapping reads to a reference sequence first,
genome-independent transcriptome reconstruction algo-
rithms such as transAbyss use the reads to directly build
consensus transcripts. Consensus transcripts can then
be mapped to a genome or aligned to a gene or protein
database for annotation purposes. The central challenge
for genome-independent approaches is to partition reads
into disjoint components, which represent all isoforms of
a gene. A commonly used strategy is to first build a de
Bruijn graph, which models overlapping subsequences,
termed ’k-mers’ (k consecutive nucleotides), rather than
reads. This reduces the complexity associated with han-
dling millions of reads to a fixed number of possible
k-mers.
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Figure 2: Comparison of current methods for surveying
transcriptome.

VI. CONCLUSION

As sequencing technologies mature, existing computational
tools will need to evolve to meet new requirements, and new
tools will emerge to enable new applications. In this paper
we have reviewed some methods of rna-sequencing and their
methods. We have also compare the methods for surveying
transcriptones and also compare the PASTA tools with the
other ones.
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