
International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

METHODS FOR KEY PHRASE EXTRACTION FROM DOCUMENTS

Baljinder Kaur1, Brahmaleen Kaur Sidhu2

Department of Computer Engineering
Punjabi University

Patiala, India.

Abstract: The word keyphrase implies two features: phrase-
ness and informativeness. It is the process of obtaining the
keyphrases which are available in the body of the text docu-
ment. Single document keyphrase extraction usually make use
of only the information contained in the specified document.
It is used to extract most frequent words which are significant
with respect to the applications. This technique is most fre-
quently used in search engines for advertisement. This paper
discusses various algorithms and tools for keyphrase extrac-
tion from documents. Application areas are also discussed.
The last section of paper compares the pursued algorithms.

Keywords: keyphrase extraction, KEA, C4.5, and GenEx.

I. INTRODUCTION

In general, a phrase is a group of words acting as a single part
of speech and not containing both a subject and a verb. It is a
part of a sentence, and does not express a complete thought.
This sentence contains five phrases: "of words", "acting as a
single part of speech", "as a single part", "of speech", and "not
containing both a subject and a verb". Technically a phrase
is a unit of language larger than a word but smaller than a
sentence. Keyphrase can be defined as a phrase of one to three
words to capture the main topic. The word keyphrase implies
two features: phraseness and informativeness. Phraseness is a
somewhat abstract notion which describes the degree to which
a given word sequence is considered to be a phrase. Infor-
mativeness refers to how well a phrase captures or illustrates
the key ideas in a set of documents. Because informativeness
is defined with respect to background information and new
knowledge, users will have different perceptions of informa-
tiveness. A Keyphrase list usually consist of 5 to 15 keyphrases.
There exist two types of concepts, keyphrase generation and
keyphrase extraction where keyphrase generation is obtaining
the keyphrases some of which are not available in the body
of the text document and keyphrase extraction is obtaining
the keyphrases which are available in the body of the text
document.

Broadly speaking keyphrase extraction involve the following
steps:

• Input restructuring : In this step required n-grams are
chosen on the basis of parts of speech pattern.

• Tokenization : It is the process of chopping a character
sequence in a document into pieces, called tokens and at
the same time throwing away certain characters, such as
punctuation.

• Forming candidates : n-grams chosen in previous steps
are marked as keyphrase candidates.

• Scoring : A suitable score is associated with each
keyphrase candidate.

• Selection : Above calculated score is responsible for doc-
ument keyphrase selection.

Commonly used POS patterns [1]:

1. POS patterns for 3-grams

(a) (N or named entity), (V or A or stop word), (N or
named entity)

(b) 3x (named entity) example: Tim Berners Lee

2. POS patterns for 2-grams

(a) A (N or named entity)

(b) 2x (named entity) example: Bill Gates

II. APPLICATION AREAS IN KEYPHRASE
EXTRACTION

There are at least five general application areas for keyphrases
[2]:

1. Text Summarization

(a) Mini-summary : Automatic keyphrase extraction can
provide a quick mini-summary for a long document.
For example, it could be a feature in a web browser;
just click the summarize button when browsing a
long web page, and then a window pops up with
the list of keyphrases.

(b) Annotated Lists : Automatic keyphrase extraction
can supply added information in a list or table of
contents. For example, each item in the hit list gen-
erated by a web search engine could have a list of
keyphrases in addition to the standard.

(c) Labels : Keyphrases can supply quickly understood
labels for documents in a user interface where there
is a need to display a set of documents.

(d) Author Assistance : Automatic keyphrase extraction
can help an author or editor who wants to supply
a list of keyphrases for a document. For example,
the administrator of a web site might want to have
a keyphrase list at the top of each web page. The
automatically extracted phrases can be a starting
point for further manual refinement by the author
or editor.

www.ijtre.com Copyright 2013.All rights reserved. 249

International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

(e) Text Compression : On a device with limited display
capacity or limited bandwidth, keyphrases can be
a substitute for the full text. For example, an email
message could be reduced to a set of keyphrases for
display on a pager; a web page could be reduced for
display on a portable wireless web browser.

2. Human-Readable Index

(a) Journal Index : Automatic keyphrase extraction can
be used to generate a human-readable index, for
access to journal articles or magazine articles.

(b) Resource Access : It can provide automatic gener-
ation of a human-readable index for access to re-
sources, such as a yellow pages, etc.

(c) Internet Access : It can provide automatic generation
of a human-readable index for access to web pages,
ftp, etc.

(d) On-the-fly Indexing: Automatic keyphrase extrac-
tion can generate a human-readable index for a dy-
namically generated cluster of documents

(e) Back-of-the-book Index : It can supply a human-
readable index for a book or on-line documentation.
Although a list of keyphrases typically contains less
than ten items, whereas a back-of-the-book index
may contain hundreds or thousands of items, an
automatic keyphrase extraction algorithm could be
used to generate a back-of-the-book index by break-
ing a long document into a series of short docu-
ments.

3. Interactive Query Refinement

(a) Narrow Hit List : Automatic keyphrase extraction
can provide suggestions for improving a query. Of-
ten a query with a conventional search engine re-
turns a huge list of matching documents. The user
would like to narrow the list by adding new terms
to the query, but it is not clear what terms should be
added.

(b) Expand Hit List : New terms can be added to a
query by disjunction, instead of conjunction, which
will yield a longer hit list.

4. Machine-Readable Index

(a) Improved Precision : It can improve conventional
search by improved weighting of terms and phrases
in a conventional search engine index table, resulting
in more precise retrieval of documents (i.e., fewer
irrelevant documents).

(b) Compression : It can be used to compress the index
tables that are used by conventional search engines,
which can save memory space in constrained appli-
cations or very large applications .

5. Keyphrases for Highlighting

(a) When we skim a document, we scan for keyphrases,
to quickly determine the topic of the docu-
ment. Highlighting is the practice of emphasiz-
ing keyphrases and key passages (e.g., sentences
or paragraphs) by underlining the key text, using a
special font, or marking the key text with a special
color. The purpose of highlighting is to facilitate
skimming. Some software tools for document man-
agement now support skimming by automatically
highlighting keyphrases.

6. Keyphrases for Indexing

(a) An alphabetical list of keyphrases, taken from a
collection of documents or from parts of a single
long document (e.g., chapters in a book), can serve
as an index. The alphabetical list of keyphrases was
generated using GenEx.

7. Keyphrases for Interactive Query Refinement

(a) The user enters a query, examines the resulting
hit list, modifies the query, then tries again. Most
search engines do not have any special features that
support the iterative aspect of searching. The left
frame shows the matching documents and the right
frame lists suggestions for narrowing the original
query. These suggestions are keyphrases extracted
by GenEx from the documents that are listed in the
left frame. The query terms are combined by con-
junction, so the hit list becomes smaller with each
iteration. However, adding the suggested terms will
never result in an empty hit list, because the terms
necessarily appear in at least one of the documents
in the hit list.

III. TOOLS USED IN KEYPHRASE
EXTRACTION

Four basic tools are discussed in this paper :

1. Carrot2
Carrot2 is a library and a set of supporting applications
you can use to build a search results clustering engine [3].
Such an engine will organize your search results into top-
ics, fully automatically and without external knowledge
such as taxonomies or preclassified content. Carrot2 con-
tains two document clustering algorithms designed specif-
ically for search results clustering: Suffix Tree Clustering
and Lingo. It is a great tool for key phrase extraction. It
uses two algorithm STC and lingo. Lingo search complete
key phrase with some other constraints key phrase. STC
is kind of Suffix Trie.Carrot2 also contains components
for fetching search results from several search engines,
such as Bing, Google, but it also supports other sources
of documents like Lucene or Solr indexes. Carrot2 is not
a search engine itself, it does not have a crawler and in-
dexer. There is a number of Open Source projects you
can use to crawl (Nutch), index and search (Lucene, Solr)
your content, which can then be queried and clustered

www.ijtre.com Copyright 2013.All rights reserved. 250

International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

by Carrot2 .Carrot2 comes with a suite of tools and APIs
that we can use to quickly set up clustering on our own
data, tune clustering results, call Carrot2 clustering from
your Java or C code or access Carrot2 clustering as a re-
mote service.Carrot2 Document Clustering Server (DCS)
exposes Carrot2 clustering as a REST service. It can cluster
documents from an external source (e.g. a search engine)
or documents provided directly as an XML stream and
returns results in XML or JSON formats. Carrot2 Web Ap-
plication exposes Carrot2 clustering as a web application
for end users. It allows users to browse clusters using a
conven

2. Maui
It is basic KEA tool but also gives options to boost tax-
onomy from Wikipedia. Maui automatically identifies
main topics in text documents. Depending on the task,
topics are tags, keywords, keyphrases, vocabulary terms,
descriptors, index terms or titles of Wikipedia articles [4].
Maui performs the following tasks:

• Term assignment with a controlled vocabulary (or
thesaurus)

• Subject indexing

• Topic indexing with terms from Wikipedia

• Keyphrase extraction

• Terminology extraction

• Automatic tagging

3. WikiFier
Enrichment of text documents with links to Wikipedia’s
pages has become an extremely popular task. This task
is called wikifieation [5]. Wikifieation is necessary for
intelligent systems that use knowledge extracted from
Wikipedia for different purposes. Showing wikified docu-
ments to reader of blogs or news feed is common as well.
Enrichment text with links to Wikipedia usually consists
of two steps: extraction of key terms from a document
and associating these terms with Wikipedia pages. Lexical
ambiguity of language presents a main difficulty for auto-
matic wikifieation. Therefore, word sense disambiguation
(WSD) is a necessary step for the automatic wikifiers. User
selects by mouse some part of the text to mark up a term
there. It’s very important to accurately select the term
boundaries, so we had implemented several techniques
that help users to do that. To make the test creating
process more easy we provide automatic preprocessing
feature which uses wikifier described in to automatically
detect terms in documents, assign them right meanings
and select key concepts.

4. Mallet
Mallet is a Java-based package for statistical natural lan-
guage processing, document classification, clustering,
topic modeling, information extraction, and other ma-
chine learning applications to text [6]. Mallet includes
sophisticated tools for document classification: efficient
routines for converting text to "features", a wide variety of
algorithms, and code for evaluating classifier performance

using several commonly used metrics. n addition to clas-
sification, Mallet includes tools for sequence tagging for
applications such as named-entity extraction from text.
Algorithms include Hidden Markov Models, Maximum
Entropy Markov Models, and Conditional Random Fields.
These methods are implemented in an extensible system
for finite state transducers. Many of the algorithms in Mal-
let depend on numerical optimization. Mallet includes
an efficient implementation of Limited Memory BFGS,
among many other optimization methods.

IV. ALGORITHMS

Three algorithms are discussed in this paper :

1. KEA : Key Extraction Algorithms
KEA automatically extracts keyphrases form the full
text of documents. The set of all candidate-parses in
a document are identified using rudimentary lexical pro-
cessing [7]. Features are computed for each candidate,
and machine learning is used to generate a classifier
that determines which candidate should be assigned as
keyphrases. Two features are used in the standard al-
gorithm; TF*IDF(term frequency * inverse document fre-
quency) and position of the first occurrence. The TF*IDF
require a corpus of text from which document frequencies
can be calculated; the machine-learning phrase requires a
set of training documents with keyphrases assigned.

Figure 1

All the components included in Figure 1 are explained as
under :

• DB - Database

• V - Vocabulary

• E C - Extracting Candidates

• C F - Calculating Features

• T - Training

www.ijtre.com Copyright 2013.All rights reserved. 251

International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

• CM - Compute Model

• CP - Compute Probabilities

• M - Model

• MK - Manual Keyphrases

• AK - Automatic Keyphrases

(a) Database : Kea gets a directory name and processes
all documents in this directory that have the exten-
sion ".txt".

(b) Vocabulary - If a vocabulary is provided, Kea
matches the documents’ phrases against this file.

(c) Extracting Candidates : Here Kea extracts n-grams
of a predefined length that do not start or end with
a stopword.

(d) Features : For each candidate phrase Kea computes
4 feature values: TF * IDF is a measure describing
the specificity of a term for this document under
consideration, compared to all other documents in
the corpus.

i. First occurrence is computed as the percentage
of the document preceding the first occurrence
of the term in the document.

ii. Length of a phrase is the number of its com-
ponent words. Two-word phrases are usually
preferred by human indexers.

iii. Node degree of a candidate phrase is the num-
ber of phrases in the candidate set that are se-
mantically related to this phrase

(e) Building the model : Before being able to extract
keyphrases from new documents, Kea first needs
to create a model that learns the extraction strategy
from manually indexed documents. This means, for
each document in the input directory there must be
a file with the extension ".key" and the same name
as the corresponding document. This file should
contain manually assigned keyphrases, one per line.

(f) Extracting keyphrases : When extracting keyphrases
from new documents, Kea takes the model and fea-
ture values for each candidate phrase and computes
its probability of being a keyphrase. Phrases with
the highest probabilities are selected into the final
set of keyphrases. The user can specify the number
of keyphrases that need to be selected.

2. C4.5
C4.5 is a decision tree induction algorithm that classify
phrases as positive or negative examples of keyphrases
[7]. For keyphrase extraction, a case is a candidate phrase,
which we wish to classify as a positive or negative exam-
ple of a keyphrase. We classify a case by examining its
features. A feature can be any property of a case that is
relevant for determining the class of the case. C4.5 can
handle real-valued features, integer-valued features, and
features with values that range over an arbitrary, fixed
set of symbols. C4.5 takes as input a set of training data,

in which cases are represented as feature vectors. C4.5
generates as output a decision tree that models the re-
lationships among the features and the classes. Let C1,
C2,âĂę, Ck be classes and T be the set of training samples
in the given node of decision tree, then;

• T contains one or more samples, all belonging to a
single class Cj.

• T contains no samples.

• T contains samples that belong to a mixture of
classes.

• Entropy test is carried out as follows:

In f o(S) = −Σ((f req(Ci, S)/|S|)− log2(f req(Ci, S)/|S|))
(1)

We convert a document into a set of feature vectors by first
making a list of all phrases of one, two, or three consecu-
tive non-stop words that appear in the given document.
(Stop words are words such as "the", "of", "and".) It uses
Iterated Lovins stemmer to find the stemmed form of each
of these phrases. The Lovins stemmer is more likely to
map two words to the same stem, but it is also more likely
to make mistakes. For example, the Lovins stemmer cor-
rectly maps "psychology" and "psychologist" to the same
stem, "psycholog. We have found that aggressive stem-
ming is better for keyphrase extraction than conservative
stemming. In our experiments, we have used an aggres-
sive stemming algorithm that we call the Iterated Lovins
stemmer. C4.5 uses 12 feature vectors as given below:

• stemmed-phrase : The stemmed form of a phrase
used for matching with human-generated phrases.

• whole-phrase : The most frequent whole phase Cor-
responding to the given stemmed phrase for output
and for calculating features 8 to 11.

• num-words-phrase : The number of words in the
stemmed phrase ,ranging from is one to three.

• first-occur-phrase : The first occurrence of the
stemmed phrase which is normalized by dividing
by the number of words in the document (including
stop words).

• first-occur-word : The first occurrence of the earli-
est occurring single stemmed word in the stemmed
phrase normalized by dividing by the number of
words in the document (including stop words).

• freq-phrase : The frequency of the stemmed phrase,
normalized by dividing by the number of words in
the document (including stop words).

• freq-word : Frequency of the most frequent single
stemmed word in the stemmed phrase normalized
by dividing by the number of words in the document
(including stop words).

• relative-length : The relative length of the most
frequent whole phrase - the number of characters

www.ijtre.com Copyright 2013.All rights reserved. 252

International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

in the whole phrase, normalized by dividing by
the average number of characters in all candidate
phrases.

• proper-noun : Is the whole phrase a proper noun?
It is based on the most frequent whole phrase.

• final-adjective : Does the whole phrase end in a
final adjective? It is based on the most frequent
whole phrase.

• common-verb : Does the whole phrase contain a
common verb?

• Class : Is the stemmed phrase a keyphrase ? It
is based on match with stemmed form of human
generated keyphrases.

C4.5 has access to nine features (features 3 to 11) when
building a decision tree. The leaves of the tree attempt to
predict class (feature 12). When a decision tree predicts
that the class of a vector is 1, then the phrase whole-phrase
is a keyphrase, according to the tree. This phrase is suit-
able for output for a human reader. We used the stemmed
form of the phrase, stemmed-phrase, for evaluating the
performance of the tree.

3. GenEx : Generator Extractor
GenEx is a Hybrid Genetic Algorithm for Keyphrase Ex-
traction. GenEx has two components, the Genitor genetic
algorithm and the Extractor keyphrase extraction algo-
rithm. Extractor takes a document as input and produces
a list of keyphrases as output [7]. Extractor has twelve
parameters that determine how it processes the input
text. In GenEx, the parameters of Extractor are tuned by
the Genitor genetic algorithm to maximize performance
on training data. Genitor is used to tune Extractor, but
Genitor is no longer needed once the training process is
complete.

1. Extractor
What follows is a conceptual description of the Extractor
algorithm. For clarity, we describe Extractor at an abstract
level that ignores efficiency considerations. That is, the
actual Extractor software is essentially an efficient imple-
mentation of the following algorithm. There are ten steps
to the Extractor algorithm. Figure below summarizes the
ten steps. Steps 4 and 5 are conceptually independent of
steps 1, 2, and 3, so they are represented as a separate
sequence. (For efficiency reasons, in the actual imple-
mentation of the algorithm, several steps are interleaved.)
Table 2 is a list of the 12 parameters of Extractor, with
a brief description of each of them. The meaning of the
parameters should become clear as the algorithm is de-
scribed. Figure 2 below specifies ten steps to the extractor
algorithm

(a) Find Single Stems : Make a list of all of the words
in the input text. Drop words with less than three
characters. Drop stop words, using a given stop
word list. Convert all remaining words to lower
case. Stem the words by truncating them at STEM-
LENGTH characters.

(b) Score Single Stems : For each unique stem, count
how often the stem appears in the text and note
when it first appears. Assign a score to each stem.
The score is the number of times the stem appears
in the text, multiplied by a factor.Extractor has 12
parameters:

• NUM-PHRASES
• NUM-WORKING
• FACTOR-TWO-ONE
• FACTOR-THREE-ONE
• MIN-LENGTH-LOW-RANK
• MIN-RANK-LOW-LENGTH
• FIRST-LOW-THRESH
• FIRST-HIGH-THRESH
• FIRST-LOW-FACTOR
• FIRST-HIGH-FACTOR
• STEM-LENGTH
• SUPPRESS-PROPER

If the stem first appears before FIRST-LOW-
THRESH, then multiply the frequency by FIRST-
LOW-FACTOR. If the stem first appears after
FIRST-HIGH-THRESH, then multiply the frequency
by FIRST-HIGH-FACTOR . Typically FIRST-LOW-
FACTOR is greater than one and FIRST-HIGH-
FACTOR is less than one. Thus, early, frequent stems
receive a high score and late, rare stems receive a
low score.

Figure 2

(c) Select Top Single Stems : Rank the stems in order of
decreasing score and make a list of the top NUM-
WORKING single stems.

www.ijtre.com Copyright 2013.All rights reserved. 253

International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

(d) Find Stem Phrases : Make a list of all phrases in the
input text. A phrase is defined as a sequence of one,
two, or three words that appear consecutively in the
text, with no intervening stop words or punctuation.
Stem each phrase by truncating each word in the
phrase at STEM-LENGTH characters.

(e) Score Stem Phrases : For each stem phrase,
count how often the stem phrase appears in the
text and note when it first appears. Assign a
score to each phrase, exactly as in step 2, using
the parameters,FIRST-LOW-FACTOR,FIRST-LOW-
THRESH, FIRST-HIGH-FACTOR, and FIRST-HIGH-
THRESH. Then make an adjustment to each score,
based on the number of stems in the phrase. If
there is only one stem in the phrase, do nothing. If
there are two stems in the phrase, multiply the score
by FACTOR-TWO-ONE. If there are three stems in
the phrase, multiply the score by FACTOR-THREE-
ONE. Typically FACTOR-TWO-ONE and FACTOR-
THREE-ONE are greater than one, so this adjust-
ment will increase the score of longer phrases. A
phrase of two or three stems is necessarily never
more frequent than the most frequent single stem
contained in the phrase.

(f) Expand Single Stems : For each stem in the list of the
top NUM-WORKING single stems, find the highest
scoring stem phrase of one, two, or three stems that
contains the given single stem. The result is a list
of NUM-WORKING stem phrases. Keep this list
ordered by the scores calculated in step 2. Now
that the single stems have been expanded to stem
phrases, we no longer need the scores that were
calculated in step 5.

(g) Drop Duplicates : The list of the top NUM-
WORKING stem phrases may contain duplicates.
For example, two single stems may expand to the
same two-word stem phrase. Delete duplicates from
the ranked list of NUM-WORKING stem phrases,
preserving the highest ranked phrase.

(h) Add Suffixes : For each of the remaining stem
phrases, find the most frequent corresponding whole
phrase in the input text. When counting the fre-
quency of whole phrases, if a phrase has an ending
that indicates a possible adjective, then the frequency
for that whole phrase is set to zero.

(i) Add Capitals : For each of the whole phrases
(phrases with suffixes added), find the best capi-
talization, where best is defined as follows. For each
word in a phrase, find the capitalization with the
least number of capitals.

(j) Final Output : We now have an ordered list of mixed-
case (upper and lower case, if appropriate) phrases
with suffixes added. The list is ordered by the scores
calculated in step 2. That is, the score of each whole
phrase is based on the score of the highest scoring

single stem that appears in the phrase. The length
of the

2. Genitor
A genetic algorithm may be viewed as a method for opti-
mizing a string of bits, using techniques that are inspired
by biological evolution. A genetic algorithm works with a
set of bitstrings, called a population of individuals. The
initial population is usually randomly generated. New
individuals (new bit strings) are created by randomly
changing existing individuals (this operation is called mu-
tation) and by combining substrings from parents to make
new children (this operation is called crossover). Each
individual is assigned a score (called its fitness) based
on some measure of the quality of the bit string, with
respect to a given task. Fitter individuals get to have more
children than less fit individuals. As the genetic algorithm
runs, new individuals tend to be increasingly fit, up to
some asymptote.

3. GenEx : Generator plus Extractor
The algorithm is tuned with a dataset, consisting of docu-
ments paired with target lists of keyphrases. The dataset
is divided into training and testing subsets. The learning
process involves adjusting the parameters to maximize
the match between the output of Extractor and the target
keyphrase lists, using the training data. The success of
the learning process is measured by examining the match
using the testing data. We assume that the user sets the
value of NUM-PHRASES, the desired number of phrases,
to a value between five and fifteen. We then set NUM-
WORKING too. The remaining ten parameters are set by
Genitor. Genitor uses a binary string of 72 bits to repre-
sent the ten parameters, as shown in Table 11. We run
Genitor with a population size of 50 for 1050 trials (these
are default settings). Each trial consists of running Ex-
tractor with the parameter settings specified in the given
binary string, processing the entire training set. The final
output of Genitor is the highest scoring binary string. Ties
are broken by choosing the earlier string. We first tried to
use the average precision on the training set as the fitness
measure, but GenEx discovered that it could achieve high
average precision by adjusting the parameters so that less
than NUM-PHRASES phrases were output. This is not
desirable, so we modified the fitness measure to penal-
ize GenEx when less than NUM-PHRASES phrases were
output:

total −matches = total number o f matches between

GenEx and human (1)

total −machinephrases = total number o f phrases

output by GenEx (2)

precision = total −matches/total −machine− phrases (3)

num− docs = number o f documents in training set (4)

total − desired = num− docsNUM− PHRASES (5)

penalty = (total −machine− phrases/total − desired (6)

f itness = precisionpenalty (7)

www.ijtre.com Copyright 2013.All rights reserved. 254

International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

The penalty factor varies between 0 and 1. It has no effect
(i.e., it is 1) when the number of phrases output by GenEx
equals the desired number of phrases. The penalty grows
(i.e., it approaches 0) with the square of the gap between
the desired number of phrases and the actual number of
phrases.

V. COMPARISION OF C4.5 WITH GENEX

A comparison of Extractor with the feature vectors we used
with C4.5 shows that GenEx and C4.5 are learning with essen-
tially the same feature sets. The two algorithms have access to
the same information, but they learn different kinds of models
of keyphrases. This section lists some of the more significant
differences between GenEx and C4.5 .

1. Given a set of phrases with a shared single-word stem (for
example, the set of phrases "learning","machine learning",
"learnability" shares the single-word stem "learn"), GenEx
tends to choose the best member of the set, rather than
choosing the whole set. GenEx first identifies the shared
single-word stem (steps 1 to 3) and then looks for the best
representative phrase in the set (steps 4 to 6). C4.5 tends
to choose several members from the set, if it chooses any
of them.

2. GenEx can adjust the aggressiveness of the stemming, by
adjusting STEM-LENGTH. C4.5 must take the stems that
are given in the training data.

3. C4.5 is designed to yield high accuracy. GenEx is designed
to yield high precision for a given NUM-PHRASES. High
precision does not necessarily correspond to high accu-
racy.

4. C4.5 uses the same model (the same set of decision trees)
for all values of NUM-PHRASES. With C4.5, We select
the top NUM-PHRASES most probable feature vectors,
but our estimate of probability is not sensitive to the
value of NUM-PHRASES. On the other hand, Genitor
tunes Extractor differently for each desired value of NUM-
PHRASES.

5. GenEx might output less than the desired number of
phrases, NUM-PHRASES, but C4.5 (as we use it here)
always generates exactly NUM-PHRASES phrases. There-
fore, in the following experiments, performance is mea-
sured by the average precision, where precision is defined
by equation (8), not by equation (9). Equation (8) ensures
that GenEx cannot spuriously boost its score by generating
fewer phrases than the user requests.

precision = number o f matches/desired number o f

machine− generatedphrases (8)

precision = number o f matches/actual number o f

machine− generated phrases (9)

References

[1] Martin Dostal and Karel Jezek. Automatic Keyphrase Ex-
traction based on NLP and Statistical Methods. Department

of Computer Science and Engineering, Faculty of Applied Sci-
ences University of West Bohemia, 2011.

[2] P. Turney. Extraction of Keyphrases from Text:Evaluation
of Four Algorithms. National Research Council, Institute for
Information Technology, 1999.

[3] Peter D. Turney. Learning Algorithms For Keyphrase Ex-
traction. National Research Council, Institute for Information
Technology, 1999.

[4] http://code.google.com/p/maui-indexer/.

[5] http://wikifier.labs.exalead.com/.

[6] http://mallet.cs.umass.edu/topics.php/.

[7] http://project.carrot2.org/.

www.ijtre.com Copyright 2013.All rights reserved. 255

http://code.google.com/p/maui-indexer/
http://wikifier.labs.exalead.com/
http://mallet.cs.umass.edu/topics.php/
http://project.carrot2.org/

	INTRODUCTION
	APPLICATION AREAS IN KEYPHRASE EXTRACTION
	TOOLS USED IN KEYPHRASE EXTRACTION
	ALGORITHMS
	COMPARISION OF C4.5 WITH GENEX

