
International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

CACHE MANAGEMENT FOR MULTI CORE ARCHITECTURE
IN REAL TIME SYSTEM

Debasis Maji1, Mainak Biswas2, Supriyo Nath3, Milan Mukherjee4, Sushovan Bhaduri5
1,2,5Master of Electrical Engineering
3Master of Illumination Engineering

4Master of Material Engineering
Jadavpur University

Kolkata, India.

Abstract: In case of multi core processors several tasks are
running simultaneously. The performance of co-running tasks
are affected due to the interference problem in shared cache
memory which depends on present task load on processors. So
need of proper job scheduling in different cores. Using of mul-
tithreading paradigm exploit the instruction level parallelism.
With a huge overhead of context switching, the use of thread
comes. On the other hand, the task calculates dynamically if
it is necessary to create different threads of execution or not.
Without going through the overhead of Thread creation or un-
necessary context switching if not required, it uses the Thread
Pool in order to distribute the work.
In this paper, the task of multiplication is taken. The tradi-
tional matrix multiplication using threads are compared with
the approach of using the Task Parallel Library (TPL).

Keywords: Multi-core, Multi-thread, Thread Pool, Task
Parallel Library, and TLP.

I. INTRODUCTION

Multi threading computer central processing units have hard-
ware support to efficiently execute multiple threads. These are
distinguished from multiprocessing systems (such as multi-
core systems) in that the threads have to share the resources
of a single core: the computing units, the CPU caches and the
translation look aside buffer (TLB).

Where multiprocessing systems include multiple complete
processing units, multithreading aims to increase utilization of
a single core by using thread-level as well as instruction-level
parallelism. As the two techniques are complementary, they are
sometimes combined in systems with multiple multithreading
CPUs and in CPUs with multiple multithreading cores.

II. MULTI-CORE

A multi-core processor is a single computing component with
two or more independent actual central processing units (called
"cores"), which are the units that read and execute program
instructions. The instructions are ordinary CPU instructions
such as add, move data, and branch, but the multiple cores can
run multiple instructions at the same time, increasing overall
speed for programs amenable to parallel computing. Manu-

facturers typically integrate the cores onto a single integrated
circuit die (known as a chip multiprocessor or CMP), or onto
multiple dies in a single chip package. Multi-core processors
are widely used across many application domains including
general-purpose, embedded, network, digital signal processing
(DSP), and graphics. The improvement in performance gained
by the use of a multi-core processor depends very much on the
software algorithms used and their implementation. In partic-
ular, possible gains are limited by the fraction of the software
that can be run in parallel simultaneously on multiple cores;
this effect is described by Amdahl’s law. In the best case, so-
called embarrassingly parallel problems may realize speedup
factors near the number of cores, or even more if the problem
is split up enough to fit within each core’s cache(s), avoiding
use of much slower main system memory. Most applications,
however, are not accelerated so much unless programmers in-
vest a prohibitive amount of effort in re-factoring the whole
problem. The parallelization of software is a significant ongo-
ing topic of research. Various methods are used to improve
CPU performance. Some instruction-level parallelism (ILP)
methods such as superscalar pipelining are suitable for many
applications, but are inefficient for others that contain difficult-
to-predict code. Many applications are better suited to thread
level parallelism (TLP) methods, and multiple independent
CPUs are commonly used to increase a system’s overall TLP.
A combination of increased available space (due to refined
manufacturing processes) and the demand for increased TLP
led to the development of multi-core CPUs.

1. THREADS
A thread is defined as the execution path of a program.
Each thread defines a unique flow of control. If the appli-
cation involves complicated and time consuming opera-
tions like database access or some intense I/O operations,
then it is often helpful to set different execution paths or
threads, with each thread performing a particular job.

2. IMPLEMENTING THREADS
In this project matrix multiplication is implemented us-
ing multi-threading in ASP.NET Framework. Threads are
lightweight processes. One common example of use of
thread is implementation of concurrent programming by
modern operating systems. Use of threads saves wastage
of CPU cycle and increase efficiency of an application. So
far programs are written where a single thread runs as a

www.ijtre.com Copyright 2013.All rights reserved. 311



International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

single process which is the running instance of the appli-
cation. However, this way the application can perform one
job at a time. To make it execute more than one task at
a time, it could be divided into smaller threads. In .NET,
the threading is handled through the System. Threading
namespace. Creating a variable of the System. Threading.
Thread type allows creating a new thread to start working
with. It allows creating and accessing individual threads
in a program.

3. CREATING THREADS
A thread is created by creating a Thread object, giving its
constructor a Thread Start reference.
ThreadStart childthread = new Thread-
Start(childthreadcall);

4. THE THREAD LIFE CYCLE
The life cycle of a thread starts when an object of the
System. Threading. Thread class is created and ends
when the thread is terminated or completes execution.
Following are the various states in the life cycle of a thread:

(a) The Un-started State: it is the situation when the
instance of the thread is created but the Start method
has not been called.

(b) The Ready State: it is the situation when the thread
is ready to run and waiting CPU cycle.

(c) The Not Run able State: a thread is not run able,
when:

i. Sleep method has been called.
ii. Wait method has been called.

iii. Blocked by I/O operations.

(d) The Dead State: it is the situation when the thread
has completed execution or has been aborted.

5. THE THREAD PRIORITY
The Priority property of the Thread class specifies the
priority of one thread with respect to other. The .Net
runtime selects the ready thread with the highest priority.
The priorities could be categorized as:

(a) Above normal

(b) Below normal

(c) Highest

(d) Lowest

(e) Normal

Once a thread is created its priority is set using the Priority
property of the thread class.
NewThread.Priority = ThreadPriority.Highest;

6. THREAD PROPERTIES AND METHODS
Thread properties and methods are defined as per table 1:

7. ORGANIZATION OF THE REPORT
In part 3, multi-threading scheduling schemes are dis-
cussed. In part 2, the problem and methodologies are
discussed. In part 5, implementation details and the re-
sults of Performance Monitor and Resource Monitor are
discussed. In part 6,future work is mentioned and con-
cluded.

Property Description

Current Context Gets the current context in which the
thread is executing

Current Culture Gets or sets the culture for the current
thread

Current Principle Gets or sets the thread’s current prin-
cipal (for role-based security)

Current Thread Gets the currently running thread

Current UI Culture Gets or sets the current culture used
by the Resource Manager to look up
culture-specific resources at run time

Execution Context Gets an Execution Context object that
contains information about the vari-
ous contexts of the current thread

Is Alive Gets a value indicating the execution
status of the current thread

Is Background Gets or sets a value indicating
whether or not a thread is a back-
ground thread

Is Thread Pool Thread Gets a value indicating whether or
not a thread belongs to the managed
thread pool

Managed Thread Id Gets a unique identifier for the cur-
rent managed thread

Name Gets or sets the name of the thread

Priority Gets or sets a value indicating the
scheduling priority of a thread

Thread State Gets a value containing the states of
the current thread

Table 1: Thread Properties and Methods.

III. LITERATURE SURVEY

Several researches are going on to improve the cache utilization,
processor performance and to meet the task deadline.

1. REAL-TIME SYSTEMS
A real-time operating system (RTOS) is an operating sys-
tem (OS) intended to serve real-time application requests.
It must be able to process data as it comes in, typically
without buffering delays. Processing time requirements
(including any OS delay) are measured in tenths of sec-
onds or shorter.
A key characteristic of an RTOS is the level of its consis-
tency concerning the amount of time it takes to accept
and complete an application’s task; the variability is jitter.
A hard real-time operating system has less jitter than a
soft real-time operating system. The chief design goal is
not high throughput, but rather a guarantee of a soft or
hard performance category.
An RTOS that can usually or generally meet a deadline
is a soft real-time OS, but if it can meet a deadline de-
terministically it is a hard real time OS.An RTOS has an
advanced algorithm for scheduling. Scheduler flexibility

www.ijtre.com Copyright 2013.All rights reserved. 312



International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

enables a wider, computer-system orchestration of process
priorities, but a real-time OS is more frequently dedicated
to a narrow set of applications. Key factors in a real-time
OS are minimal interrupt latency and minimal thread
switching latency; a real-time OS is valued more for how
quickly or how predictably it can respond than for the
amount of work it can perform in a given period of time.

2. HARD-REAL TIME SYSTEM
An overrun in response time leads to potential loss of life
and/or big financial damage. Many of these systems are
considered to be safety critical. Sometimes they are "only"
mission critical, with the mission being very expensive. In
general there is a cost function associated with the system.

3. SOFT REAL-TIME SYSTEM
Deadline overruns are tolerable, but not desired. There
are no catastrophic consequences of missing one or more
deadlines. There is a cost associated to overrunning, but
this cost may be abstract. It often connected to Quality-of-
Service (QoS).

4. FIRM REAL-TIME SYSTEM
The computation is obsolete if the job is not finished on
time. Cost may be interpreted as loss of revenue. Typical
examples are forecast systems.

5. WEAKLY HARD REAL-TIME SYSTEM
Systems where m out of k deadlines has to be met. In
most cases feedback control systems, in which the control
becomes unstable with too many missed control cycles.
Best suited if system has to deal with other failures as
well (e.g. Electro Magnetic Interference EMI).

6. NON REAL-TIME SYSTEM
In most cases the (soft) real-time aspect may be
constructed (e.g. acceptable response time to user
input).Computer system is backed up by hardware (e.g.
end position switches). Quite often this type of system
has simply oversized computers.

A. DIFFERENT SOLUTIONS

1. MEMORY PROFILING AND COLORED LOCK-
DOWN [1]
Multi-core architectures are shaking the fundamental as-
sumption that in real-time systems the WCET, used to
analyze the schedulability of the complete system, is cal-
culated on individual tasks. This is not even true in an
approximate sense in a modern multi-core chip, due to
interference caused by hardware resource sharing. In this
work proposed as (1) a complete framework to analyze
and profile task memory access patterns and (2) a novel
kernel-level cache management technique to enforce an
efficient and deterministic cache allocation of the most
frequently accessed memory areas. In this way, a power-
ful tool is provided to address one of the main sources of
interference in a system where the last level of cache is
shared among two or more CPUs.

2. WCRT MINIMIZATION [5]
In a multi core platform, the inter-thread cache interfer-
ences can significantly affect the worst-case execution time
(WCET) of each real-time task, which is crucial for schedu-
lability analysis. At the same time, the worst-case cache
interferences are dependent on how tasks are scheduled
to run on different cores, thus creating a circular depen-
dence. An offline real-time scheduling approach on multi
core processors by considering the worst-case inter-thread
interferences on shared L2 caches is done. This scheduling
approach uses a greedy heuristic to generate safe sched-
ules while minimizing the worst-case inter-thread shared
L2 cache interferences and WCET.

3. THREAD SCHEDULING LIBRARY [3]
Here four libraries are compared for efficiently running
threads when the performance of a CPU cores are de-
graded. First, brute performance of the libraries when
all the CPU resources are available are considered and
second, measuring how the scheduling strategy impacts
also the memory management in order to revisited. It is
well known that work stealing, when done in an anarchic
way, may lead to poor cache performance. It is also known
that the migration of threads may induce penalties if they
are too frequent. At the processor level, the memory man-
agement in order to find trade-offs between active thread
number that an application should start and the memory
hierarchy.

4. INTER THREAD CACHE INTERFERENCE [2]
In a multi core platform, the inter-thread cache interfer-
ences can significantly affect the worst-case execution time
(WCET) of each real-time task, which is crucial for schedu-
lability analysis. At the same time, the worst-case cache
interferences are dependent on how tasks are scheduled
to run on different cores, thus creating a circular depen-
dence. In this solution, an offline real time scheduling
approach on multi core processors by considering the
worst-case inter-thread interferences on shared L2 caches
is presented. The scheduling approach uses a greedy
heuristic to generate safe schedules while minimizing the
worst-case inter-thread shared L2 cache interferences and
WCET.

IV. MULTI-THREADING

Some advantages of multi-threading include:

1. If a thread gets a lot of cache misses, the other thread(s)
can continue, taking advantage of the unused computing
resources, which thus can lead to faster overall execution,
as these resources would have been idle if only a single
thread was executed.

2. If a thread cannot use all the computing resources of the
CPU (because instructions depend on each other’s result),
running another thread can avoid leaving these idle.

3. If several threads work on the same set of data, they can
actually share their cache, leading to better cache usage
or synchronization on its values.

www.ijtre.com Copyright 2013.All rights reserved. 313



International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

Some criticisms of multithreading include:

1. Multiple threads can interfere with each other when shar-
ing hardware resources such as caches or TLBs.

2. Execution times of a single thread are not improved but
can be degraded, even when only one thread is execut-
ing. This is due to slower frequencies and/or additional
pipeline stages that are necessary to accommodate thread-
switching hardware.

3. Hardware support for multithreading is more visible to
software, thus requiring more changes to both application
programs and operating systems than multiprocessing.

The Task Parallel Library (TPL) is based on the concept of
a task, which represents an asynchronous operation. In some
ways, a task resembles a thread or Thread Pool work item, but
at a higher level of abstraction. The term task parallelism refers
to one or more independent tasks running concurrently. Tasks
provide two primary benefits:

1. More efficient and more scalable use of system resources.
Behind the scenes, tasks are queued to the Thread Pool,
which has been enhanced with algorithms that determine
and adjust to the number of threads and that provide
load balancing to maximize throughput. This makes tasks
relatively lightweight, and can create many of them to
enable fine-grained parallelism.

2. More programmatic control than is possible with a thread
or work item. Tasks and the framework built around
them provide a rich set of APIs that support waiting,
cancellation, continuations, robust exception handling,
detailed status, custom scheduling, and more.

For both of these reasons, in the .NET Framework, TPL is the
preferred API for writing multi-threaded, asynchronous, and
parallel code. Objective of this project work is to show the
comparative results of multi-threading and TPL by using the
task of matrix multiplication.

V. PROPOSED WORK

1. INTRODUCTION
The Task Parallel Library (TPL) is a set of public types
and APIs in the System. Threading and System. Thread-
ing. Tasks namespaces in the .NET Framework 4. The
purpose of the TPL is to make developers more produc-
tive by simplifying the process of adding parallelism and
concurrency to applications. The TPL scales the degree
of concurrency dynamically to most efficiently use all the
processors that are available. In addition, the TPL handles
the partitioning of the work, the scheduling of threads on
the Thread Pool, cancellation support, state management,
and other low-level details. By using TPL, it is possible to
maximize the performance of code while focusing on the
work that the program is designed to accomplish.

2. PARALLEL PROGRAMMING IN .NET FRAMEWORK
Many personal computers and workstations have two or
four cores (that is, CPUs) that enable multiple threads
to be executed simultaneously. Computers in the near

Figure 1: A high-level overview of the parallel program-
ming architecture in the .NET Framework 4

future are expected to have significantly more cores. To
take advantage of the hardware of today and tomorrow,
it is possible to parallelize code to distribute work across
multiple processors. In the past, parallelization required
low-level manipulation of threads and locks. Visual Stu-
dio 2010 and the .NET Framework 4 enhance support
for parallel programming by providing a new runtime,
new class library types, and new diagnostic tools. These
features simplify parallel development so that it is possi-
ble to write efficient, fine-grained, and scalable parallel
code in a natural idiom without having to work directly
with threads or the thread pool. Fig 5.1 A high-level
overview of the parallel programming architecture in the
.NET Framework 4.

3. TASK PARALLEL LIBRARY
Starting with the .NET Framework 4, the TPL is the pre-
ferred way to write multithreaded and parallel code. How-
ever, not all code is suitable for parallelization; for exam-
ple, if a loop performs only a small amount of work on
each iteration, or it doesn’t run for many iterations, then
the overhead of parallelization can cause the code to run
more slowly. Furthermore, parallelization like any multi-
threaded code adds complexity to program execution.

4. DATA PARALLELISM USING TPL
Data parallelism refers to scenarios in which the same
operation is performed concurrently (that is, in parallel)
on elements in a source collection or array. In data
parallel operations, the source collection is partitioned so
that multiple threads can operate on different segments
concurrently.
// Sequential version
foreach (var item in sourceCollection)

www.ijtre.com Copyright 2013.All rights reserved. 314



International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

{
Process(item);
}
// Parallel equivalent
Parallel.ForEach(sourceCollection, item => Process(item));

When a parallel loop runs, the TPL partitions the data
source so that the loop can operate on multiple parts
concurrently. Behind the scenes, the Task Scheduler parti-
tions the task based on system resources and workload.
When possible, the scheduler redistributes work among
multiple threads and processors if the workload becomes
unbalanced.

5. TASK PARALLISM USING TPL
The Task Parallel Library (TPL) is based on the concept
of a task, which represents an asynchronous operation.
In some ways, a task resembles a thread or Thread Pool
work item, but at a higher level of abstraction. The term
task parallelism refers to one or more independent tasks
running concurrently. Tasks provide two primary benefits:
More efficient and more scalable use of system resources.
Behind the scenes, tasks are queued to the Thread Pool,
which has been enhanced with algorithms that determine
and adjust to the number of threads and that provide
load balancing to maximize throughput. This makes tasks
relatively lightweight

6. HARDWARE ENVIRONMENT

• Processor - Core i5 (3rd Generation)

• Variant - 3337U

• Chipset - Mobile HM76 Express

• Brand - Intel

• Clock Speed - 1.8 GHz with Turbo Boost Up to 2.7
GHz

• Cache - 3 MB

• System Memory - 6 GB DDR3

• Hardware Interface - SATA

• RPM - 5400

• HDD Capacity - 500 GB

7. SOFTWARE ENVIRONMENT

• Microsoft Visual Studio Professional 2010

• Implemented in ASP.NET which is a web develop-
ment platform in Microsoft

• .NET Framework

• Visual C and HTML is used

• Operating System Windows Ultimate 7 Type 64-bit
and can be created many of them to enable fine-
grained parallelism.

More programmatic control than is possible with a thread
or work item. Tasks and the framework built around
them provide a rich set of APIs that support waiting,

cancellation, continuations, robust exception handling,
detailed status, custom scheduling, and more.

For both of these reasons, in the .NET Framework, TPL
is the preferred API for writing multi-threaded, asyn-
chronous, and parallel code.

8. BLOCK SCHEMATIC

Figure 2: Block Schematic

Performance Monitor and Resource Monitor is used to
show Multi-core Processor Utilization and Cache Utiliza-
tion.

9. EXPERIMENTAL SETUP With the software and hard-
ware mentioned the code is executed. The input is given
in the constructed GUI and results are compared.

EXPERIMENT 1 For the same size of matrices the multi-

Figure 3: The GUI to execute MM

www.ijtre.com Copyright 2013.All rights reserved. 315



International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

threading takes 28351 milliseconds but the MM using TPL
takes 8693 milliseconds. The result is analyzed using Resource
Monitor and Performance Monitor. The X-axis shows the

Figure 4: utilization of 4 cores while executing MM using
multi-threading

time taken in seconds and the Y-axis shows the percentage of
processor utilization. While the MM executes the percentage
of processor utilization varies from time to time. In the fig
the utilization mostly varies from 30 to 80 percent. While

Figure 5: utilization of 4 cores while executing MM using
TPL

using TPL the percentage utilization of all the processors
are increased and reached to the peak for most of time of
task utilization. When the MM finishes execution then the
utilization decreases. The instances 0,1,2,3 are four counters

and working as processor object.

EXPERIMENT 2 The result is shown in Resource Monitor.

Figure 6: Utilization of individual cores while MM using
multithreading

It is possible to input any no. of rows and columns in the two
matrices but no of columns in the first matrix and no of rows
in the second matrix should be same so that the two matrices
are compatible for MM. When the MM using multithreading is
executing the utilization of individual processors in the system
are shown. Here the CPU performances are random. So most
of the processors are underutilized and processors are idle
for some time. For the same input of matrices M1(1000*1020)

Figure 7: Utilization of individual cores while MM using
TPL

and M2(1020*600) the multithreading takes 24067 milliseconds
and TPL takes 7006 milliseconds. The individual processor
utilization of all processors is almost 100% for the time the MM
was executing using TPL. Hard Faults is when a program has
asked for an address and the page it resides on is no longer
located in main memory as it has either been swapped to
disk or has to be referenced from the original source file on
disk somewhere. This metric can be used to find performance
problems. The less hard faults an application generates, the
more often the information it is requesting is found in RAM
and the less often it needs to access slower storage mechanisms.
In fig 5.8 while MM using multithreading is executing the
cached memory used is 1304 MB and the graph shows some

www.ijtre.com Copyright 2013.All rights reserved. 316



International Journal For Technological Research In Engineering
Volume 1, Issue 5, January-2014 ISSN (Online) : 2347 - 4718

Figure 8: Cache used in MB and Hard Faults per second
while using multithreading

Figure 9: Cache used in MB and Hard Faults per second
while using TPL

hard faults has occurred. When MM using TPL is executing
the no of hard faults are less and the cache memory used here
is 1310 MB. So TPL has much improved performance.

VI. CONCLUSION AND FUTURE WORK

From the experiments given it is possible to conclude that
TPL is more efficient approach rather than using multithread-
ing. Although multithreading uses Instruction level and thread
level parallelism to improve performance but the creation of
thread and execution is costly because it needs sharing of hard-
ware. The TPL scales the degree of concurrency dynamically
to most efficiently use all the processors that are available. The
TPL is used and relative performance of MM is shown using
performance monitor and resource monitor.

In next phase of work the ways to improve shared cache
performance by encouraging or discouraging the co-scheduling
of groups of tasks based on their expected cache impact is to
be explored. Cache aware global-EDF (Earliest Deadline First)
task scheduling algorithm is to be used.

References

[1] Renato Mancusoy, Roman Dudkoy, Emiliano Betti, Marco
Cesati, Marco Caccamoy, and Rodolfo Pellizzoniz. Real-
time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE, 2013.

[2] Yiqiang Ding, and Wei Zhang. On the Interactions Between
Real-Time Scheduling and Inter-thread Cache Interferences

of Multicore Processors Quality Electronic Design (ISQED).
14th International Symposium, 2013.

[3] Christophe Cerin Hazem Fkaier, and Mohamed Jemni.
Experimental study of thread scheduling libraries on de-
graded CPU. 14th IEEE International Conference on Parallel
and Distributed Systems, 2008.

[4] Xiaoya Xiang, Bin Bao, Chen Ding and Kai Shen. Cache
Conscious Task Regrouping on Multicore Processors. 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 2012.

[5] Huping Ding Yun Liang Tulika Mitra. Shared Cache Aware
Task Mapping for WCRT Minimization. Design Automation
Conference (ASP-DAC),18th Asia and South Pacific, 2013.

[6] Mayank Shekhar, Abhik Sarkar, Harini Ramaprasad, and
Frank Mueller. Semi-Partitioned Hard-Real-Time Schedul-
ing Under Locked Cache Migration in Multicore Systems.
24th Euromicro Conference on Real-Time Systems, 2012.

[7] Hyoseung Kim, Arvind Kandhalu, and Ragunathan (Raj)
Rajkumar. A Coordinated Approach for Practical OS-Level
Cache Management in Multi-Core Real- TimeSystems. 25th
Euromicro Conference on Real-Time Systems, 2013.

[8] Chun-Yi Shih, Ming-Chih Li, Chao-Sheng Lin, Pao-Ann
Hsiung, and Chih-Hung Chang. Adaptive Performance
Monitoring for Embedded Multicore Systems. International
Conference on Parallel Processing Workshops, 2011.

www.ijtre.com Copyright 2013.All rights reserved. 317


	INTRODUCTION
	MULTI-CORE
	LITERATURE SURVEY
	DIFFERENT SOLUTIONS

	MULTI-THREADING
	PROPOSED WORK
	CONCLUSION AND FUTURE WORK

