
International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

CONSTRUCTING SECURE WEB APPLICATIONS WITH PROPER DATA
VALIDATIONS

Krishna Reddy1, Prasanth Kumar2

1,2M.Tech Scholar
Department of Information Security

Manipal University
Jaipur, India.

Abstract: With the advent of World Wide Web, informa-
tion sharing through internet increased drastically. So web
applications security is today’s most significant battlefield
between attackers and resources of web service. It is likely
to remain so for the foreseeable future. By considering recent
attacks it has been found that major attacks in Web Applica-
tions have been carried out even when system having most sig-
nificant network level security. Poor input validation mecha-
nisms that using in Web Applications shall causes to launch-
ing vulnerable web applications, which easy to exploit easy
in future stages. Critical Web Application Vulnerabilities like
Cross Site Scripting (XSS) and Injections (SQL, PHP, LDAP,
SSL, XML, Command, and Code) are happen because of base
level Validations, and it is enough to update system in unau-
thorized way.

Keywords: Security, Validation, Vulnerability, XSS, Injec-
tion.

I. INTRODUCTION

Constructing secure application is very difficult, in terms of
complexity. More over there is no measures for security, provid-
ing security means to keep avoiding attacking patterns. When
industry moving towards electronic communication, web ser-
vice palace major role for information interchange. Mainly
web applications serves public information, up to some extend
attack patterns having less impact in web service, when service
starts to store and transfer confidential in information through
internet, attack patterns are involving in between normal com-
munication, such activities spoils user or service present states.
In initial stages security handles with antivirus, then in network
level, now security threats more in application level, due to
lack of secure code [1]. So vulnerability is defined as weakness
in system or future of system that males easy to exploit. Vul-
nerability might be existing at the host, network or application
levels.

Many application especially web based application faces
risks and those applications will cause to violate policies that
are maintained in application. Web applications works in the
principle "web server accepting user request and process it,
again gives proper acknowledgments" this process enough
to implement communication channel. When organization
moves to automate business with web service via internet at-
tack surfaces comes in front, due to lack of security auditing.

Application level attacks place interesting role in web appli-
cations, which causes to financial lose, and creates serious
reputation. Majorly application level attacks happen because
of input validations [2,13], digital information that requesting
by user in application surface, service have to configure to
process user requests in proper way, to keep out attack surfaces.
In application level vulnerability identification is absolutely
difficult; data validation is the only way to keep application
secure from application attacks. Cross Site Scripting and Injec-
tion vulnerabilities are commonly found in complex business
applications, unfortunately commercial applications also not
so far from application level attacks.

II. DATA VALIDATION VULNERABILITIES
IN WEB APPLICATIONS

Most common web application security threat is failure to
properly validate input coming from user requests before using
it. "All Input is Evil" data coming from external entity to
server should never be trusted, treat data coming from external
entity can be tampered by attacker [3]. Basically complex and
commercial applications often have a large number of entry
points; some cases it difficult to provide validation because of
complexity issues. These data validation vulnerabilities leads

Figure 1: Data Validation Vulnerabilities

to form Cross Site Scripting and Injection flaws.

www.ijtre.com Copyright 2013.All rights reserved. 333

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

A. Cross Site Scripting (XSS) Vulnerability

Cross Site Scripting, abbreviated as XSS, is most common appli-
cation level attack, which hackers can use to slip into vulnerable
web application; such attack can directly take place at victim’s
browser that used across web. XSS attacks are caused by failure
in the web application to properly validate user input [4]. Web
applications provide private session with help of cookies, such
secure cookies can be stealing with help of XSS attack. Also
XSS attacks can able to redirect users into malicious pages,
inject scripts into client side any scripting languages (VB, JAVA,
PHP scripts) to execute on victim’s browser. Script can able
to inject in URI or may be in response header, depends on
attack (Stored, Reflected, and DOM), attack location can be
decided. Traditionally XSS used to update private settings by
attackers, and able to launch shell, hijacking user state, and
spread malicious worm over web [14].

XSS attack patterns described as follows:

Input -> Output = Cross Site Scripting

Consider following scripts to inject:

<script>window.location=’https://example.com/doc/
hack=’+document.cookie;</script>

Executing above script able to steal user cookie and send it
to attacker addressed location.

<x href=http://example.com/>xss</x>

Above code can able to redirect victim location to attacker
site.

<iframe src=javascript:alert(abc)>

Injecting script irrespective of client or server side scripting
languages, scripts can directly executing in victim’s machine.

<body onload=alert(page locked)>

This exploitation causes to mask front end of user actual
response pattern, happened when page body loading in users
local application.

Like this XSS can able to launch bad script into user surface,
when user active in malicious pages impact is not measurable.

B. Command Injection Vulnerability

OS Command injection which trying to inject a command
through HTTP request to application. This technique used via
web interface in order to execute operating system commands
on web server which is not properly sanitized [5]. Such a
vulnerability can able to upload malicious scripts to service,
and possible to get passwords from service.

OS Command injection pattern describes as follows:

Input -> OS Command = OS Command injection

Consider following URL request:

http://abcd/cgi-bin/udata.u1?doc=user.txt

Modified URL:

http://abcd/cgi-bin/udata.u1?doc=/bin/ls|

Where modified URL executes /bin/ls.

Executing OS Commands in URL can able to update server
state. In some cases command patterns able to execute along
with user requests, or maybe input fields along with user
application. Command might be anything if those command
lines got execute permissions in service, then each command
will processed in server. It is essential to prohibit executing
operating system commands, on service to prevent command
injection.

C. XML Injection Vulnerability

When XML parser fail to make appropriate data validation,
XML injection vulnerability arise in service [6]. Such services
have possible to accept any malicious information along with
actual user requests.

Attack pattern can be defined as follows.

Input –> XML document = XML injection

In XML document there is own specialty for Angular paren-
thesis > and <, Comment tag <!–/–>, Ampersand &, CDATA
begin and end tags <![CDATA[/]]>.

Each XML document shell form with help of above tags, in
such case poorly configured service vulnerable to injection.

Consider following code:
<html>
<![CDATA[<]]>script<![CDATA[>]]>alert(’123’)<![CDATA[
<]]>/script<![CDATA[>]>
</html>
Successful execution of above code will launch the script

"<script>alert(’123’)</script>" which is XSS vulnerable.

D. Code Injection Vulnerability

Malicious code possible to inject into an application data that
will be later executed by web server. Code submitted along
with input request, that process by service as dynamic code or
as in an include file [7]. This exploitation mainly causes to lose
of availability.

Code injection pattern describes as follows:

Input –> Malicious code = Code injection

Consider following malicious URL to request service:

www.ijtre.com Copyright 2013.All rights reserved. 334

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

http://www.abc.com/sys.php?pin=http://www.xyz.com
/user/is.j pg?&cmd=name%20-x

Launching this malicious URL is accepted as a parameter
for the above PHP page, which will later use the value in an
include file. Particularly above issue arises because of length
validations and URL ordering. Service have to take care about
user entry points, because this exploitation is not only in URL
so service have to check all application entry points.

E. Server Side Includes (SSI) Injection Vulnerability

SSI have ability to add piece of dynamic code inside static
HTML page, without having full-fledged connection with client
or server side scripting languages [8]. This exploitation allows
an attacker to inject code into HTML pages or possible to
perform remote code execution. Pages hosted in web server
will arises SSI vulnerability. So SSI surely arises security threats
when service available in public environment.

Let see following code in HTML pages.

<!–#exec cmd="ls" –>
<!–#include virtual="/etc/passwd" –>

This allows to execute system command, if system command
will execute in web server, then there is no place for security.

F. XPATH Injection Vulnerability

XPATH applies to data that stored in XML format, this vul-
nerability can be possible to bypass authentication or able to
gain access in an unauthorized manner to manage system, this
impact is not leave for single page, it can able to corrupt whole
document [9].

Consider following query for authentication purpose:

string(//user[username/text()=’uname’ and password/text()=
’pass’]/account/text())

XPATH vulnerable application can able to pass query as

string(//user[username/text()=’ ’ or ’1’ = ’1’ and password/
text()= ’ ’ or ’1’ = ’1’]/account/text())

So this vulnerability can bypass existing security controls.
So XPATH injection attacks can be much more adaptable and
ubiquitous.

G. SQL Injection Vulnerability

SQL injection used to attack data driven application in which
malicious SQL query inserted to bypass authentication by pass-
ing true values to service. SQL injection is not a database
vulnerability poorly configured server will always process ma-
licious requests and send sensitive information to malicious
users.

A successful SQL injection exploitation can able to assign
administrative permissions mainly for accessing database files,

such as insert, delete and update permissions. In some cases
failed attempts also caused for SQL injections. Gaining ac-
cess to manage sensitive information by malicious users then
there is no security mechanism. SQL injection mainly occurs
because of parameters used in service, and this vulnerability
can able to do extracting data from database, execution of re-
mote commands, privilege escalation [10]. Query which we are
requesting to database, server accepts parameters from user
and make it as query then send it to database, in this process
poorly configured service causes SQL injection attack.

SQL injection vulnerability attack pattern describes as
follows.

Input -> SQL query = SQL Injection

Consider following SQL query :

SELECT * FROM CSE WHERE USERNAME = ’$USER-
NAME’ AND PASSWORD = ’$PASSWORD’

Suppose if we pass request as

SELECT * FROM CSE WHERE USERNAME = ’1’ OR ’1’ =
’1’ AND PASSWORD = ’1’ OR ’1’ = ’1’

This request in vulnerable application carried as follows;

http://www.abc.com/index.php?username=1’%20or%20’1’%2
0=%20’1&password=1’%20or%20’1’%20=%20’1

This condition is always true because of true values, where
vulnerable system has authenticated without username and
password. So SQL injection vulnerability applications can
easily bypass authentication, by processing true values, along
with requested information.

III. IMPACT OF DATA VALIDATION
VULNERABILITIES

Security is nonfunctional issues for service, when security
threats arises system survivability is difficult in public service.

a) XSS : Redirect to other service, may be malicious sys-
tem. Requesting malicious payloads along with service.
Upload malicious code along with any one of images,
scripting languages, URL. Directly under take system
events. Steal user’s sensitive information from service,
and able to send it to malicious user address. Upload-
ing shell to system to process unnecessary commands.
Injecting logger into system to store user activities [11].
Able to change system, user settings, sending unnecessary
information to system users, requesting for modifying
authentication mechanisms. Disturbing business work
flow path. Importing malicious scripts to system, sending
encoded form information. Injecting scripts under images
to server. Mainly XSS can able to launch other type of
injection patterns.

www.ijtre.com Copyright 2013.All rights reserved. 335

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

b) COMMAND : Up loading malicious scripts via service
requests, able to execute operating system commands.
Creating executing permission without proper authoriza-
tion, undertaking system activities, able to update system.
Possible to add new system users, change permissions on
existing users and transferring information from service.

c) XML : Injecting unwanted or malicious script to service,
which process along with request. Uploading malformed
tags to server, which executed dynamically on server.

d) CODE : Sending malicious code along with user request
headers. Mainly it depends on code injecting on service
which can able to store in server and possible to run mali-
cious code in later stages. It can able to change parameter
list to process code in later stages. Which leads to loss of
confidentiality integrity and availability.

e) SSI : Irrespective of client side or server side scripting
language injecting command lines on web pages, and able
to give execute permission in web page itself.

f) XPATH : Able to gain access on service, elevating privilege
if data stored in XML files.

g) SQL : Bypassing authentication by requesting true val-
ues along with requesting parameters for accessing user
sessions. Attempting to retrieve database details, such as
table names, number of table rows and columns. Attempt-
ing to pass command lines along with service fields, and
those command lines can able to execute at processing
time [12]. Injecting error statements, sending null values,
uploading encoding values, SQL injection mainly used for
detecting database schema and able to retrieve data from
database. And able to get access permissions, possible to
privilege escalation. Major amount of data can leak from
service only with SQL injection.

IV. ISSUE REMEDIATIONS

Depends on security threat, data validations have to maintain
in service. Mainly in this category there must be strict valida-
tions in server side, even better to prefer sanitize. In case of
complexity case better to go for sanitization [13].

a) XSS : Use application program interface, to handle user
inputs. In complex applications there is many entry points,
for user requests, keep on validating input information
(string length, special characters, and script tags). Then
go for sanitization.

b) COMMAND : Use application program to filter com-
mand activities, because there is possibility to execute
runtime commands. Prevent to process static commands.
Always go for predefined list of instructions.

c) XML : Use least privilege access, go for secure patch man-
agement, and check network status after system updates,
to check number of requests.

d) CODE : Go for input validation, selective input inclu-
sion and exclusion on input data. Escaping dangerous
characters, by secure functions implemented in sever side

languages. Implement input and output encoding. Put
restrictions on dynamic code execution.

e) SSI : Keep privilege for write and executing permissions
on system, execute predefined command lines only, and
avoid static command execution. Sanitization is preferable,
prevent dynamic changes in system.

f) XPATH : Use web application firewall. Keep avoiding
changes in existing system, if changes is necessary go
for secure policies, authorization. Don’t allow all users
to be run all queries in system. Implement accessing
limits on data by using Role Based Access Control (RBAC)
technique.

g) SQL : Primarily go for input validations; such as string
lengths, special characters, later go for sanitize user in-
put. Use parameterized queries, to generate dynamic SQL
queries. Go for database functions and stored procedures.
Always prefer predefined function executions. Put limit
access on service, to prevent brute force. Consider restric-
tions on strings and all inputs, string lengths. Use least
privilege access. Implement secure cache management.

V. ANALYSIS

Web applications are mainly deals with request and response
to process and manage information with webserver. In terms
of business point of view, there must be place to security, if not
possible to change private state turn to public. Result to loose
integrity, confidentiality, availability. For this web server have
to make sense before it process, which digital information that
server receives from user requests. Use secure coding strategies
from application designing phase onwards. User input never
be trusted it contains anything before processing request data
have to validate. Methods and functions used to host pages in
web server causes to security threats.

In order to complete application developers basically
follows software development life cycle, which analyze whole
functional architecture of application except security risks,
this SDLC mainly manipulate by the security unaware team.
To overcome these risk patterns implement secure software
development life cycle (SSDLC), which consider only secure
methods and functions.

Data validations 6⊂ web server ⇒ vulnerable web applica-
tions

Data validations ⊂ web server⇒ secure web applications

Mainly security threats will occur because of functions and
methods used in application, so major risks will active in the
development stage itself. It is difficult to change methods and
functionality of application when attack happens, so prefer
only secure application development strategies, and consider
security as functional issue in each develop and deployment
stages, to provide secure communication.

www.ijtre.com Copyright 2013.All rights reserved. 336

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

VI. DEPLOYMENT STRATEGIES

Web applications are hosted rapidly for business mobility, to
providing service throughout web. When applications are
becoming complex and transaction oriented, application have
to consider secure communication, to continue survivability of
application in the web. For that start application development
in secure manner from beginning stage itself. Test the security
strategies from development stage only, so security awareness
is essential to development team, then only secure software
development life cycle (SSDLC) will fulfill. Once application
is deployed irrespective of attacks keep on update the system.
And go for log analysis, to prevent malicious users. Periodically
check the network status of system, to analyze request patterns.
Then check for load and stress on system to prevent unexpected
system crashes [14]. Prefer only secure patch management
strategies. Take system backup to local machine, never link old
backups to service.

VII. CONCLUSION

In this paper, we present data validation vulnerabilities and
describing attack patterns of each attack, and we proposed pre-
cautions to maintain in web application development, deploy-
ment and maintaining strategies, to prevent attack happening
from service entry points. To provide secure application, it is
difficult to wait until attack take place, keep on avoiding attack
patterns with help of data validations and input sanitization is
only the best way to introduce secure web applications.

Future evaluation of work shall focus on evaluating the
secure web application development strategies, to provide re-
liable and secure communication, having lesser complexities
and more reliable services, which prevent internal and external
attack patterns on a system.

References

[1] Gary McGraw and John Viega. Building Secure Software:
How to Avoid Security Problems the Right Way. Addison-
Wesley Pub Co.

[2] Dafydd Stuttard, Marcus Pinto. The Web ApplicationâĂŹs
Handbook - Discovering and Exploiting Security Flaws. Wiley,
2008.

[3] Mike Howard and David LeBlanc. Writing Secure Code.
Microsoft Press.

[4] Sivakumar K and Garg K. Constructing a common Cross
site scripting vulnerabilities enumeration (CXE) using
CWE and CVE. LNCS 4812, eds. P McDaniel and SK Gupta
- Springer, pages 277–291, 2007.

[5] Gary McGraw and Greg Hoglund. Exploiting Software:
How to Break Code. Addison-Wesley Pub Co.

[6] Rosa, T.M., Santin A.O., and Malucelli A. Mitigating XML
Injection 0-Day Attacks through Strategy-Based Detection
Systems. Security and Privacy, IEEE, 10.1109/MSP.2012.83,
pages 46–53, 2012.

[7] Saxena P., Akhawe D., Hanna S., Feng Mao, McCamant
S., and Song D. A Symbolic Execution Framework for
JavaScript. Security and Privacy (SP), IEEE, pages 513–528,
2010.

[8] Sverre Huseby. Sverre Huseby. AJohn Wiley and Sons.

[9] Asmawi A., Affendey L.S., Udzir N.I., and Mahmod R.
Model-based system architecture for preventing XPath
injection in database-centric web services environment.
Computing and Convergence Technology (ICCCT), pages 621–
625, 2012.

[10] Johari, R. ; Sharma, P. A Survey on Web Application
Vulnerabilities (SQLIA, XSS) Exploitation and Security
Engine for SQL Injection. Communication Systems and Net-
work Technologies (CSNT), 10.1109/CSNT.2012.104, pages
453–458, 2012.

[11] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp"
D. Petkov, Anton Rager, and Seth Fogie. Cross Site Scripting
Attacks: XSS Exploits and Defense. Syngress, 2007.

[12] Joel Scambray, Mike Shema, Caleb Sima. Hacking Exposed
Web Applications. McGraw-Hill, 2006.

[13] Atashzar, H. ; Torkaman, A. ; Bahrololum, M. ; Tadayon,
M.H. A survey on web application vulnerabilities and
countermeasures. Computer Sciences and Convergence Infor-
mation Technology (ICCIT), pages 647–652, 2011.

[14] James S. Tiller. The Ethical Hack: A Framework for Business
Value Penetration Testing. Auerbach.

www.ijtre.com Copyright 2013.All rights reserved. 337

	INTRODUCTION
	DATA VALIDATION VULNERABILITIES IN WEB APPLICATIONS
	Cross Site Scripting (XSS) Vulnerability
	Command Injection Vulnerability
	XML Injection Vulnerability
	Code Injection Vulnerability
	Server Side Includes (SSI) Injection Vulnerability
	XPATH Injection Vulnerability
	SQL Injection Vulnerability

	IMPACT OF DATA VALIDATION VULNERABILITIES
	ISSUE REMEDIATIONS
	ANALYSIS
	DEPLOYMENT STRATEGIES
	CONCLUSION

