
International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

SECURITY OF VULNERABILITY TESTING USING MODELS

Urmi Chhajed1, Gazal Ojha2, Ajay Kumar3

JECRC University
Jaipur, India.

Abstract: This paper deals with an original approach to
automate Model-Based Vulnerability Testing (MBVT) for Web
applications, which aims at improving the accuracy and pre-
cision of vulnerability testing. Today, Model-Based Testing
techniques are mostly used to address functional features. The
adaptation of such techniques for vulnerability testing defines
novel issues in this research domain. In this paper, we de-
scribe the principles of our approach, which is based on a
mixed modeling of the application under test: the specifica-
tion indeed captures some behavioral aspects of the Web ap-
plication, and includes vulnerability test purposes to drive the
test generation algorithm. This approach is illustrated with
the widely-used DVWA example.

Keywords: Vulnerability testing, Model-Based Testing,
Web applications, DVWA example.

I. INTRODUCTION

The continued growth of Internet usage as well as the devel-
opment of Web applications foreground the challenges of It
security, particularly in terms of data confidentiality, data in-
tegrity and service availability. Thus, as stated in the annual
barometer concerns of Information Technology Managers1, for
72% of them, computer security and data protection are their
primary concerns. This growth of risk arises from the mosaic
of technologies used in current Web applications (e.g., HTML5),
which increases the risk of security breaches.

This situation has led to significant growth in application-
level vulnerabilities, with thousands of vulnerabilities detected
and disclosed annually in public databases such as the MITRE
CVE - Common Vulnerabilities and Exposures2. The most
common vulnerabilities found on these databases especially
emphasize the lack of resistance to code injection of the kind
SQL Injection or Cross-Site Scripting (XSS), which have many
variants. They appear in the top list of current web applica-
tions attacks. Application-level vulnerability testing is first
performed by developers, but they often lack the sufficient in
depth knowledge in recent vulnerabilities and related exploits.

This kind of tests can also be achieved by companies special-
ized in security testing, in pen-testing (for penetration testing)
as instance. These companies monitor the constant discovery of
such vulnerabilities, as well as the constant evolution of attack
techniques. But they mainly use manual approaches, making
the dissemination of their techniques very difficult, and the
impact of this knowledge very low.

Finally, Web application vulnerability scanners can be used
to automate the detection of vulnerabilities, but since they often
generate many false positive and false negative results, human

verification and investigation are also required.
The work presented in this paper aims to improve the accu-

racy and precision of vulnerability testing, by means of models
(inferred or manually designed) and test patterns, in order
to avoid both false positive and false negative. It also allows
to automate vulnerability testing of Web applications by cap-
turing vulnerability test patterns, which allow to increase the
detection of such vulnerabilities and finally improve the overall
level of security. The original contributions of this paper are
the following :

The evolution of the traditional model-based testing ap-
proach to generate vulnerability test cases for Web applications:

1. The use of Vulnerability Test Patterns as test purposes to
drive the test generation engine through models.

2. The modeling activity dedicated to vulnerability testing
that combines modeling of the system under test and
modeling of the environment activities.

3. The model-based testing technology we used (from Smart
testing) has been deeply adapted to drive the generation
of negative tests by ad-hoc Test Purposes for vulnerability
testing.

This evolution of Smart testing technology to support secu-
rity and vulnerability test generation has been mostly devel-
oped within ITEA2 DIAMONDS project3. In the remainder of
this paper, we first present our approach following the exam-
ple of vulnerability testing of Cross- Site Scripting (XSS). We
provide modeling material and test purposes in order to show
how the test generation tool chain computes vulnerability test
cases, which are executable on the targeted application. This
presentation then relies on an experiment conducted on a Web
application named DVWA (Damn Vulnerable Web Applica-
tion4), which is a demonstration application featuring typical
vulnerabilities. Finally, we position this work in the state of the
art and offer a conclusion and perspectives.

II. MODEL-BASED VULNERABILITY
TESTING

We propose to revisit and adapt the traditional approach of
Model-Based Testing (MBT) in order to generate vulnerability
test cases for Web applications. This adapted approach is called
Model-Based Vulnerability Testing (MBVT). In this section, we
firstly describe the specificities of the MBVT approach.

Secondly, we introduce the DVWA example used in the rest
of the paper to illustrate the MBVT approach, and finally, we
define the scope of the experiments conducted on this example.

www.ijtre.com Copyright 2013.All rights reserved. 338

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

A. Principles of the MBVT approach

MBT [1] is an increasingly widely-used approach that has
gained much interest in recent years, from academic as well as
industrial domain, especially by increasing and mastering test
coverage, including support for certification, and by providing
the degree of automation needed for shortening the testing ex-
ecution time. MBT refers to a particular approach of software
testing techniques in which both test cases and expected results
are automatically derived from a high-level model of the Sys-
tem Under Test (SUT). This high-level model, which defines the
input of the MBT process, specifies the behaviors of the func-
tions offered by the SUT, independently of how these functions
have been implemented. The generated test cases from such
models allow to validate the behavioral aspects of the SUT by
comparing back-to-back the results observed on the SUT with
those specified by the model. MBT aims thus to ensure that the
final product conforms to the initial functional requirements.
It promises higher quality and conformance to the respective
functional requirements, at a reduced cost, through increased
coverage (especially about stimuli combination) and increased
automation of the testing process [2]. However, if this tech-
nique is used to cover the functional requirements specified in
the behavioral model of the SUT, it is also limited to this scope,
since what is not modeled will not be tested.

The use of MBT techniques to vulnerability testing requires
to adapt both the modeling approach and the test generation
computation. Within the traditional MBT process, which al-
lows to generate functional test cases, positive test cases5 are
computed to validate the SUT in regards to its functional re-
quirements. Within vulnerability testing approach, negative
test cases6 have to be produced: typically, attack scenarios to
obtain data from the SUT in an unauthorized manner. The
proposed process to perform vulnerability testing, depicted in
Figure 1, is composed of the four following activities:

1. The Test Purposes activity consists in formalizing test pur-
poses from vulnerability test patterns that the generated
test cases have to cover.

2. The Modeling activity aims to define a model that captures
the behavioral aspects of the SUT in order to generate
consistent (from a functional point of view) sequences of
stimuli.

Figure 1: Model-Based Vulnerability Test Process

3. The Test Generation and Adaptation activity consists in
automatically producing abstract test cases from the arti-
facts defined during the two previous activities.

4. The Concretization, Test Execution and Observation activ-
ity aims to;

(a) Translate the generated abstract test cases into exe-
cutable scripts,

(b) To execute these scripts on the SUT,

(c) To observe the SUT responses and to compare them
to the expected results in order to assign the test
verdict and automate the detection of vulnerabilities.

All these MBVT activities are supported by a dedicated Tool
chain, which is based on an existing MBT software named
Certify It [3], [4] provided by the company Smartesting7. This
software is a test generator that takes as input a test model,
written with a subset of UML (called UML4MBT [5]), which
captures the behavior of the SUT. More concretely, a UML4MBT
model consists of (i) UML class diagrams to represent the static
view of the system (with classes, associations, enumerations,
class attributes and operations), (ii) UML Object diagrams to
list the concrete objects used to compute test cases and to define
the initial state of the SUT, and (iii) state diagrams (annotated
with OCL constraints) to specify the dynamic view of the SUT.

Such UML4MBT models have a precise and unambiguous
meaning, so that those models can be understood and com-
puted by the Certify It technology. OCL expressions indeed
provide the expected level of formalization necessary for MBT
modeling. This precise meaning makes it possible to simulate
the execution of the models and to automatically generate test
cases by applying predefined coverage strategies. Each gen-
erated test case is typically an abstract sequence of high-level
actions from the UML4MBT models. These generated test se-
quences contain the sequence of stimuli to be executed, but
also the expected results (to perform the observation activity),
obtained by resolving the associated OCL constraints.

Section III describes, in a detailed manner, each of these
activities and illustrates them using a running example, which
is introduced in the next subsection.

B. Presentation of the DVWA example

In order to evaluate the effectiveness and efficiency of our
approach, we have applied it on a Web application called
DVWA. The objective of this open-source Web application test
bed, based on PHP/MySQL, is to provide an aid for security
professionals, web developers and teachers/students to learn,
improve, and test their skills in vulnerability discovery. It can
also be used to test web security testing tools, like vulnerability
scanners for instance.

DVWA embeds several vulnerabilities, notably vulnerabil-
ities of the kind SQL Injection and Blind SQL Injection, and
Reflected and Stored XSS. These vulnerabilities are commonly
used to attack current Web applications8. Each vulnerability
has a dedicated menu item leading to a dedicated page. DVWA
also embeds three security levels: low, medium, and high. Each
level carries different security protections: the lowest level has

www.ijtre.com Copyright 2013.All rights reserved. 339

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

no protection at all, the medium level is a refined version but
is still quite vulnerable, and the highest level is a properly
secured version. Users can choose which level they want to
work with by specifying it through the application. It is also
possible to view and compare the source code of each security
level.

C. Perimeter and objectives of experimentations

Our approach allows testing an application among the four
types of attack mentioned earlier (Blind and Not Blind SQL
Injection, Reflected/Stored XSS). To ease the understanding, we
focus this presentation on the Reflected XSS attack (RXSS). It is
one of the major breach because it is highly used and because
its exploitation leads to severe risks (such as identity spoofing).

An XSS attack targets end-users. This kind of attack happens
when a user input (form field, url parameter, cookie value) is
used by the server to produce a response. A pirate injects
malicious data (such as a script, typically written in JavaScript,
which will be executed by an end-user browser) in the Web
application through a user input. Lack of user input valida-
tions leads to unsecured applications. An XSS attack is either
Reflected (the response containing malicious data is immedi-
ately produced and sent back to the end-user) or Stored (the
malicious data is saved in the application’s database, and re-
trieved later, in another context). Our presentation focus on
RXSS vulnerabilities through form fields. For each security
level, our objective is to apply our MBVT approach in order
to compute and execute test cases allowing discovery of RXSS
vulnerabilities.

III. DETAILS OF OUR APPROACH

In this section, we detail each main activity of the MBVT pro-
cess. For each activity, we present its objectives as well as its
process. The DVWA running example is used to illustrate our
statements.

A. Formalizing Vulnerability

Formalizing Vulnerability Test Patterns into Test Purposes Vul-
nerability Test Patterns (vTP) are the initial artifacts of our
approach. A vTP expresses the testing needs and procedures
allowing the identification of a particular breach in a Web
application. There are as much vTP as there are types of
application-level breaches. The ITEA2 DIAMONDS9 research
project has already studied vTP, and provide a first definition
as well as a first listing of vTP [6]. The characteristics of a Vul-
nerability Test Pattern are: its name, its description, its testing
objectives (precising the addressed testing objectives) , its pre-
requisites (precising the conditions and knowledge required for
a right execution), its procedure (precising its modus operandi),
its observations and its oracle (precising which information
has to be monitored in order to identify the presence of an
application-level breach), its variants (precising some alterna-
tives regarding the means in use, or the malicious data, or what
is observed), its known issues (precising any limitation or prob-
lem (e.g., technical) limiting its usage), its affiliated vTP (listing

its correlated vTP), its references (to public resources dealing
with application-level vulnerability issues, such as CVE, CWE,
OWASP, CAPEC, ...). Figure 2 presents the Vulnerability Test
Pattern of Reflected XSS attack.

Table 1

For this vTP, variants of malicious data are defined during
the modeling activity, variants of the procedure are defined
during the adaptation and execution activity. The initial pro-
cedure is defined in a test purpose. A test purpose is a high
level expression that formalizes a test intention linked to a
testing objective to drive the automated test generation on the
behavioral model. In the MBVT context, we propose to use
test purposes to formalize vTP. We propose test purposes as a
mean to drive the automated test generation. The test purpose
language we are presenting is called Smart testing Test Pur-
pose Language [7]. This is a textual language based on regular
expressions [8], allowing the formalization of vulnerability test
intention in terms of states to be reach and operations to be
called. The language relies on combining keywords, to produce
expressions that are both powerful and easy to read. Basically,
a test purpose is a sequence of important stages to reach (last
five lines in Figure 3). A stage is a set of operations or behavior
to use, or/and a state to reach. Transforming the sequence of
stages into a complete test case, based on the model behavior
and constraints, is left to the MBT technology (more details
comes in the section III-C). Furthermore, at the beginning of
a test purpose, the test engineer can define iterators (three
first lines in Figure 3). Iterators are used in stages, in order
to introduce context variations. Each combination of possible
values of iterators produces a specific test case.

Example (DVWA):
Formalizing the vTP of Figure 2, applied on the DVWA case

study. This schema precise that for all sensible web pages,
for all malicious data enabling the detection of RXSS breach,
and for all security levels of DVWA, it is required to do the
followings:

www.ijtre.com Copyright 2013.All rights reserved. 340

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

Figure 2: Shows the test purpose

1. Use any operation to activate the sensible page with the
required security level,

2. Inject the malicious data in all the user inputs of the page,

3. Check if the page is sensible to the RXSS attack.

The three keywords ALL * are enumerations of values, de-
fined by the security test engineer, allowing him/her to master
the final amount of test cases. Fig. 3. test Purpose formalizing
the vTP of Figure 2 on DVWA We use a second test purpose,
similar to the presented one, enabling to precisely target which
user input fields have to be injected. This test purpose gives
ways of control to the security engineer. Modifications are:

1. One added iterate targeting sensible fields, and

2. The use of the operation inject Field instead of the opera-
tion inject All Fields.

B. Modeling

The modeling activity produces a model based, on one hand,
on the functional specifications of the application, and on the
other hand on the test purposes which will be applied to it
(keywords used in test purposes have to be modeled). We
present in the following the used UML diagrams (classes, ob-
jects, state diagrams), and their respective usages in the context
of our MBVT approach. Class diagrams specify the static as-
pect of the model, by defining the abstract objects of the SUT.
Class diagrams of our approach share many similarities with
traditional MBT.

Classes model business objects (notably, the SUT class mod-
els the system under test, and defines the points of control
and observation). Associations model relations between busi-
ness objects. Enumerations model sets of abstract values, and
literals model each value. Class attributes model evolving char-
acteristics of business objects. Class operations model points of
control and observation of the SUT (we found here navigations
between pages). Nevertheless, our MBVT approach differs
from the traditional MBT by (see Figure 4):

1. Two additional classes (page and field) and their relations,
which respectively model the general structure of the
application and the user input fields potentially used to
inject malicious data;

2. Some additional operations, coming from the test pur-
poses, which model means to exercise and observe the
attack;

3. One additional enumeration which model malicious data
injected in user input fields.

The UML state diagram graphically specifies the behavioral
aspect of the SUT, modeling the navigations between pages of
the Web application. States model Web pages, and transitions
model the available navigations between these Web pages. Trig-
gers of transitions are the UML operations of the SUT class.
Guards of transitions (specified in OCL) precisely define the
context of firing. Effects of transitions (also specified in OCL)
precisely define the modifications induced by the execution of
transitions.

The UML object diagram models the initial state of the SUT,
by instantiating class diagram elements. Thus, instances model
business entities available at the initial state of the SUT, and
links model relations between these entities. In our MBVT
approach, the object diagram models the Web pages of the
application and the user input fields of these pages. Exam-
ple (DVWA): Figure 5 presents the class model of the DVWA
example (Page and Field classes are not shown).

Figure 3: Class diagram of DVWA

Note that:

1. The additional class User models the potential users of
the application;

2. Class attributes message and security level respectively
model application feedbacks and security level;

3. The five first operations model the necessary and sufficient
functional subset of the application allowing the access to
the tested pages with the relevant level of security;

4. Operations inject All Fields and inject Field, which are
keywords coming from test purposes, model the injection
of malicious data on all or part of the user input fields of
Web pages;

5. Operation check Message models the observation of the
message attribute; operation check R XSS Attack models
the observation of the attack, and serves as oracle.

Moreover, regarding the static aspect of the model, some enu-
meration literals model malicious data variants: RXSS DUMMY
is a basic variant, RXSS COOKIE1 and RXSS COOKIE2 are two
variants allowing to retrieve private user information, and
RXSS WAF EVASION models a variant allowing to bypass
some web application firewall techniques (see section III-D for

www.ijtre.com Copyright 2013.All rights reserved. 341

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

Figure 4: Class diagram of the SUT structure, for our
MBVT approach

their translation into concrete values). For the time being, we
only deal with a few malicious data variants.

The main concern is to experiment our approach and evalu-
ate whether it is realistic. In future works, we plan to retrieve
them from an external source (the OWASP XSS Filter evasion
cheat cheet10 for example) during the concretization phase.
This way, our approach would only be focusing on producing
abstract vulnerability test cases, and each test case would be
concretized and executed with each malicious data variant.

Figure 6 presents the state diagram, which models the be-
havior of DVWA. It defines precedences between pages: iden-
tification is required before reaching any other page of the
application. Finally, Figure 7 presents the initial state of the
DVWA model. It specifies:

1. One user, with its credentials, and

2. The pages and user input fields of DVWA.

C. Test generation

The main purpose of the test generation activity is to pro-
duce test cases from both the model and the test purposes.
Three phases compose this activity. The first phase transforms
the model and the test purposes into elements usable by the
Smartesting CertifyIt MBT tool. Notably, test purposes are
transformed into test targets, a test target being a sequence of
intermediate objectives used by the symbolic generator. Hence,
the sequence of stages of a test purpose is mapped to a se-
quence of intermediate objectives of a test target. Furthermore,
this first phase manages the combination of values between
iterators of test purposes, such that one test purpose produces
as many test targets as possible combinations.

The second phase produces the abstract test cases from the
test targets. This phase is left to the test case generator.

An abstract test case is a sequence of steps, where a step
corresponds to a completely valued operation call. An oper-
ation call represents either a stimulation or an observation of
the SUT. Each test target produces one test case

1. Verifying the sequence of intermediate objectives and

2. Verifying the model constraints.

Note that an intermediate objective (and hence, a test purpose
stage) can be transformed into several steps. Figure 8 presents
a test cases obtained from the test purpose of Figure 3. The five
first steps of this test case correspond to the first stage of the
test purpose. Finally, the third phase exports the abstract test
cases into the execution environment. In our case, it consists
on

1. Creating a JUnit test suite, where each abstract test case is
exported as a JUnit test case, and

2. Creating an interface.

This interface defines the prototype of each operation of the
SUT. The implementation of these operations is in charge of
the test automation engineer.

Example (DVWA) : We are using two test purposes and
have defined four malicious data, in order to test one page
with one user input field. Each test purpose produces 12 test
targets, where each test target produces exactly one abstract
test case, for a total amount of 24 abstract test cases. Figure 8
presents one of the generated abstract test cases. It has to be
interpreted this way:

1. It logs in the application with valid credentials;

2. It sets the security level;

3. It loads the targeted Web page;

4. It verifies the correct execution of the functional part of
the test case (using the check Message observation);

5. It injects the malicious datum; (vi) it verifies if there exists
an application-level breach or not (using the heck RXSS
Attack observation). This last step assigns the verdict of
the test case.

Regarding the test purpose focusing on precise user in-
put fields, test cases only differ at step #6, where the in-
ject Field operation replaces the inject All Fields operation.

Figure 5: Abstract test case example

D. Adaptation and test execution

During the modeling activity, each page, user input field, mali-
cious datum, user credentials, etc. ... in summary, all data used
by the application, are modeled in a abstract way. Hence, the
test suite can’t be executed as it is. The gap between abstract
keywords used in abstract test cases and the real API of the
SUT must be filled. To ease the understanding of our approach,
we only present an adaptation of the kind 1$1, but tables with
multiple values are also used for a mapping of the kind 1$*.
Stimuli must also be adapted. When exporting the abstract test
cases, the MBT tool provides an interface defining the signature
of each operation. The test automation engineer is in charge to
implement the automated execution of each operation of this
interface. Because we are testing Web applications, we have
studied two ways of automation:

www.ijtre.com Copyright 2013.All rights reserved. 342

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

1. At the GUI level: we stimulate and observe the appli-
cation via the client-side GUI of the application. Even
if this technique is time consuming, it could be neces-
sary when the client-side part of the application embeds
JavaScript scripts. For this technique, we use the Selenium
framework.

2. At the HTTP level: we stimulate and observe the appli-
cation via HTTP messages send to (and received from)
the server-side application. This technique is extremely
fast and can be used to bypass HTML and JavaScript
limitations. For this technique, we are using the Apache
HTTPClient Java library. The last but not the least activity
of the MBVT is to execute the adapted test cases in order
to produce a verdict. We introduce a new terminology
fitting the characteristics of a test execution:

(a) Attack-pass : The complete execution of the test
reveals that the application owns a breach, unlike in
MBT where a complete execution of a test indicates
a valid implementation;

(b) Attack-fail : The failure of the execution of the last
step reveals that the application is robust to the
attack, unlike MBT where such a failure indicates a
invalid implementation;

(c) Inconclusive : In certain circumstances, it is not sure
that a breach is discovered (e.g., due to technical
issues). An abnormal event happens, but no breach
has been observed. Example (DVWA): The model
defines four malicious data dedicated to Reflected
XSS attacks. These values are defined in an abstract
way, and must be adapted. Each of them is mapped
to a concrete value, as shown in Figure 9.

Operations of the SUT can be adapted in two ways: Us-
ing Selenium or HTTPClient. However, we mainly use the
HTTP-based approach (HTTPClient), because this techniques
dramatically saves time on DVWA, for the same results. Based
on the execution of the test suite, 50% of the test cases have
been identified as Attack-pass: the two first malicious data with
a low security level, the third malicious datum with the low
and medium security level, and the fourth malicious datum
with the medium security level. These results fit our manual
experiments on DVWA. This concordance gives a first valida-
tion of our approach with regards to the addressed subset of
vulnerabilities, and the DVWA context.

Figure 6: State diagram of DVWA example

Figure 7: Object diagram of DVWA

IV. STATE OF THE ART

The tool landscape in web application security testing is struc-
tured in two main classes of techniques:

1. Static Application Security Testing (SAST), which are
white-box approaches including source, byte and object
code scanners and static analysis techniques;

2. Dynamic Application Security Testing (DAST), which in-
cludes black-box web applications scanners, fuzzing tech-
niques and emerging model-based security testing ap-
proaches.

In practice, these techniques are complementary, addressing
different types of vulnerabilities. For example, SAST techniques
are good to detect buffer overflow and other badly formatted
string, but not so good to detect XSS or CSRF vulnerabilities.

So, in this section, we focus on DAST techniques and provide
a state of the art of emerging model-based security testing
techniques.

Fuzzing techniques relate to the massive injection of invalid
or atypical data (for example by randomly corrupting an XML
file) generally by using a randomized approach [9].

Test execution results can therefore expose various invalid
behaviors such as crash effects, failing built-in code assertions
or memory leaks.

Web application vulnerability scanners aim to detect vul-
nerabilities by injecting attack vectors. These tools generally
include three main components [10]: a crawler module to fol-
low web links and URLs in the web application in order to
retrieve injection points, an injection module which analyzes
web pages, input points to inject attack vectors (such as code
injection), and an analysis module to determine possible vul-
nerabilities based on the system response after attack vector
injection. As shown in recent comprehensive studies [11], [12],
corroborated by research papers [13], [14] and confirmed by
our own experience with tools such as IBM AppScan11, these
tools suffer from two major weaknesses that highly decrease
their practical usefulness:

Limitations in application discovery As black-box web vul-
nerability scanners ignore any request that can change the state
of the web application, they miss large parts of the application.
Therefore, these tools test generally a small part of the web
application due to the ignorance of the application behavioral
âĂIJintelligenceâĂİ. Due to the growing complexity of the
web applications, they have trouble dealing with specific issues
such as infinite web sites with random URL based session IDs
or automated form submission.

Generation of many false positive results. The already-
mentioned benchmark shows that a common drawback of these

www.ijtre.com Copyright 2013.All rights reserved. 343

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

tools is the generation of false positives at a very important
rate either for Reflected XSS, SQL injection or Remote File
Inclusion vulnerabilities. The reason is that these tools use
brute force mechanisms to fuzz the input data in order to
trigger vulnerabilities and establish a verdict by comparison to
a reference execution trace. Therefore, they lack precision to
assign the verdict, as they do not compute the topology of the
web application to precisely know where to observe.

These strong limitations of existing web vulnerability scan-
ners lead to the key objectives of model-based vulnerability
testing techniques: better accuracy in vulnerability detection,
both by better covering the application (by capturing the be-
havioral intelligence) and by increasing the precision of the
verdict assignment. In this way, Model-based security test-
ing are emerging techniques aiming to leverage model based
approaches for security testing [15]. This includes:

a) Model-based test generation from security protocol,
access-control or security-oriented models. Various
types of models of security aspects of the system
under test have been considered as input to gen-
erate security test. For example, [16] proposes a
method using security protocol mutation to infer se-
curity test cases. [17] develops a model-based secu-
rity test generation approach from security models [11]
http://www.ibm.com/software/awdtools/appscan/ in
UMLSec. [18] presents a methodology to exploit a model
describing a Web application at the browser level to guide
a penetration tester in finding attacks based on logical
vulnerabilities.

b) Model-based fuzzing. This approach applies fuzzing
operator in conjunction with models; For example, [19]
proposes an approach that generates invalid message se-
quences instead of invalid input data by applying be-
havioral fuzzing operators to valid message sequences
in form of UML sequence diagrams. Model-based test
generation from weakness or attack models In these types
of approaches, test cases are generated using threat, vul-
nerability or attacker models, which reflects the common
steps needed to perform an attack, and the required asso-
ciated data. For example, [20], threats to security policies
are modeled with UML sequence diagrams, allowing to
extract event sequences that should not occur during the
system execution.

Complementary to these model-based techniques for secu-
rity testing, our model-based vulnerability testing approach
allows to generate vulnerability tests from a model that mixes
functional behavioral features of the system under test and
aspects that model the possible attacks, which is modeling
aspects of the environment of the system. Moreover, contrary
to functional MBT, the proposed MBVT process is driven by
the vulnerability test patterns, so that the behavioral model
is restricted to the only elements that are needed to compute
the vulnerability test cases. The research goal of the MBVT
approach, which is introduced in this paper, is thus to improve
the accuracy and precision of vulnerability testing by means
of models (inferred or manually designed) and test patterns.
By accuracy of vulnerability testing, we mean the capability

to focus vulnerability testing on the relevant part of the soft-
ware (e.g. from a risk assessment point of view) depending
on the targeted vulnerability types. By precision, we mean the
capability to avoid both false positive and false negative.

V. CONCLUSION

Web application vulnerabilities fall into two categories: Techni-
cal vulnerabilities include cross-site scripting, injection flaws
and buffer overflows. Logical vulnerabilities relate to the logic
of the application to get it to do things it was never intended to
do. They often are the result of faulty application logic. Logical
vulnerabilities are specific to the functionality of particular web
applications, and, thus, they are extremely difficult to charac-
terize and identify. For example, an important security breach
have been discovered and disclosed in 2012 in the Pay pal pay-
ment module of Magento12 eCommerce framework, due to the
capability to falsify the payment amount after concluding the
deal [21].

This paper proposes a Model-Based Vulnerability Testing
(MBVT) approach from a behavioral model and test patterns,
which aims to address both technical and logical vulnerabili-
ties. Technical vulnerabilities are managed by the composition
of a navigational behavioral model and related test patterns;
and logical vulnerabilities may be addressed through more
complete modeling and adequate patterns. The research goal
is to improve the capability to focus vulnerability testing on
the relevant part of the software (e.g., from a risk assessment
point of view) and the capability to avoid both false positive
and false negative. MBVT is renewing deeply the research
questions around MBT. The target is now negative tests (sim-
ulating attacks from a malicious agent) and no more positive
tests. Automated test generation is driven by ad-hoc Test Pur-
poses capturing vulnerability test patterns. At this stage of
our research, this has already strongly impacted the core test
generation engine of the MBT technology we are using (Smart
testing Certify It), which initially was based on model coverage
only.

The main drawback of model-based vulnerability testing
echoes the one of MBT in general: the needed effort to design
models, test purposes, and adapter. We are following sev-
eral research directions to reduce this effort, which consist in
identifying the reusability potential of the three artifacts from
one project to another: test purposes can be made generic to
their affiliated vulnerability type, model parts can be made
generic to a web development framework (like Magento for
e-commerce solutions) and also automatically generated, at
least partially, using crawling techniques, and the adapter of
those model parts can also be made generic to the associated
framework.

Therefore, our future work leads in two main research direc-
tions:

1. Extending the method by covering more vulnerability
classes, both technical (such as CSRF, file disclosure and
file injection) and logical (such as the integrity of data
over applications business processes). We will also study;

www.ijtre.com Copyright 2013.All rights reserved. 344

International Journal For Technological Research In Engineering
Volume 1, Issue 6, February-2014 ISSN (Online) : 2347 - 4718

2. how the various MBVT artifacts may be made generic
and reusable from one project to another project. In this
context, we will focus on eCommerce applications, and
more particularly eCommerce applications build on the
top of the Magento framework. Indeed, eCommerce appli-
cations built with Magento have good properties because
they rely to custom development and use of add-ons, both
being well known to introduce security vulnerabilities.

Finally, this MBVT approach will be used as a basis to de-
fine and experiment risk-based security testing techniques for
large scale networked systems within the European FP7 project
RASEN13.

References

[1] Gary McGraw and John Viega. Building Secure Software:
How to Avoid Security Problems the Right Way. Addison-
Wesley Pub Co.

[2] A. Dias-Neto and G. Travassos. A Picture from the Model-
Based Testing Area: Concepts, Techniques, and Chal-
lenges. Advances in Computers, 80:45–120, 2010.

[3] E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F.
Peureux, M. Utting, and E. Torreborre. Model-based test-
ing from UML models. volume 94, pages 223–230, 2006.

[4] F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux.
A test generation solution to automate software testing.
volume 2008, pages 45–48, 2008.

[5] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N.
Vacelet, and M. Utting. A subset of precise UML for
model-based testing. volume 2007, pages 95–104, 2008.

[6] D. I. Project, Initial Security Test Patterns Cat-
alogue, DIAMONDS Consortium, Berlin, Ger-
many, Public Deliverable D3.WP4.T1 - [Online].
http://publica.fraunhofer.de/documents/N-
212439.html, 2012.

[7] J. Botella, F. Bouquet, J.F. Capuron, F. Lebeau, B. Legeard,
and F. Schadle. Model-based Testing of Cryptographic
Components Lessons Learned from Experience. 2013.

[8] J. Julliand, P.A. Masson, and R. Tissot. Generating security
tests in addition to functional tests. pages 41–44, 2008.

[9] A. Takanen, J. DeMott, and C. Miller. Fuzzing for Software
Security Testing and Quality Assurance. Norwood, MA,
USA: Artech House, Inc. 2008.

[10] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the
Art: Automated Black-Box Web Application Vulnerability
Testing. pages 332–345, 2010.

[11] D. Allan. Web application security: automated
scanning versus manual penetration testing. IBM
Rational Software, White Paper, January 2008. [On-
line]. ftp://ftp.software.ibm.com/software/
rational/web/whitepapers/rwpautoscan.pdf,
2008.

[12] Web site on Price and Feature Comparison of
Web Application Scanners. [Online]. http://
www.sectoolmarket.com/.

[13] M. Finifter and D. Wagner. Why Johnny can’t pentest: an
analysis of black-box web vulnerability scanners. pages
111–131, 2010.

[14] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. Exploring
the relationship between web application development
tools and security. pages 99–111, 2011.

[15] I. Schieferdecker, J. Grossmann, and M. Schneider. Model-
based security testing. volume 80, pages 1–12, 2012.

[16] F. Dadeau, P C.Heam, and R. Kheddam. Mutation-Based
Test Generation from Security Protocols in HLPSL. pages
240–248, 2011.

[17] J. Jurjens. Model-based Security Testing Using UMLsec:
A Case Study. The Journal of Electronic Notes in Theoretical
Computer Science (ENTCS), 220(1):93–104, 2008.

[18] M. Buchler, J. Oudinet, and A. Pretschner. Semi-Automatic
Security Testing of Web Applications from a Secure Model.
pages 253–262, 2012.

[19] M. Schneider. Model-based behavioural fuzzing. pages
39–47, 2012.

[20] L. Wang, E. Wong, and D. Xu. A threat model driven
approach for security testing. 2007.

[21] NBS System - Vulnerability in Magento’s im-
plementation of PayPal. [Online]. http://
www.nbs-system.com/wp-content/uploads/
AdvisoryMagentoPaypal.pdf.

www.ijtre.com Copyright 2013.All rights reserved. 345

http://publica.fraunhofer.de/documents/N-212439.html
http://publica.fraunhofer.de/documents/N-212439.html
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/rwpautoscan.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/rwpautoscan.pdf
http://www.sectoolmarket.com/
http://www.sectoolmarket.com/
http://www.nbs-system.com/wp-content/uploads/AdvisoryMagentoPaypal.pdf
http://www.nbs-system.com/wp-content/uploads/AdvisoryMagentoPaypal.pdf
http://www.nbs-system.com/wp-content/uploads/AdvisoryMagentoPaypal.pdf

	INTRODUCTION
	MODEL-BASED VULNERABILITY TESTING
	Principles of the MBVT approach
	Presentation of the DVWA example
	Perimeter and objectives of experimentations

	DETAILS OF OUR APPROACH
	Formalizing Vulnerability
	Modeling
	Test generation
	Adaptation and test execution

	STATE OF THE ART
	CONCLUSION

