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Abstract: In this paper we define the sequence space 

),,,( sqplm  on seminormed complex linear space, by 

using a sequence of orlicz functions. We study its some 

algebraic and topological properties. We give also some 

inclusion relations. 
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1. INTRODUCTION 

Let X be a complex linear space with zero element 

,...)0,0(  and  ),( qXX  be a seminormed space 

with the seminorm q. S(X) denotes the linear space of all 

sequence  )( kxx  with Xxk )(  with the usual 

coordinate wise operations. 

  

)(y xand )( kkk yxxx    for each C where 

C denotes the set of complex numbers. If  )( k  is a 

scalar sequence and  )(xsx  

)x(xthen kk  . 

Many authors including KINMAZ, CICDEM, A. BEKTAS 

defined new sequence spaces using a particular function like 

modulus function, orlicz function etc… 

 

LINDERSTRAUSS and TZAFRIR have used an orlicz 

function to construct the sequence space,  
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The spaces  Ml  becomes space with the norm 
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Which is called an orlicz space. The space Ml  is closely 

related to the space Pl which is an orlicz sequence space 

with  

 p1for  )( pxxM . 

 

 

Let M be a orlicz function, X be a seminormed space with 

seminorm 0, sq real number and let kpp   be a 

sequence of positive numbers .Then, 
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In this section the space ),,( sqplM is extended to 

),,,( sqplM  as follows. 
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THEOREMS OF ),,,( sqplM  : 

 

Theorem: 1.1 

Let k
k

pH sup , then ),,,( sqplM  is a linear space 

over the field C of complex numbers. 

 

Proof: 
 

Let ),,,(, sqplyx M   and C ,  

In order to prove we need to find some 3 such that  
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Since ),,,(, sqplyx M   

There exists positive numbers 21,  such that  
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Define  213 2,2max    
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Hence ),,,( sqplyx M   if x and y belongs to 

),,,( sqplM  and C , . 

Where )2,1max( 1 HD  

Hence ),,,( sqplM   is a linear space. 

 

Theorem: 1.2 

),,,( sqplM 
is a paranormed (need not total paranorm) 

space with 
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Proof : 

 To prove that )()( xgxg   
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And then by using minkowski’s inequality we get,  

g(y)g(x)y)g(x   

Since  0(0)gget  we0,M(0) and 0)q(    

Finally, to prove that scalar multiplication is continuous. 

Let  be any number, since  
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We may write,
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Where 


r .Since  Hpk  ,1max , 

Then  HHpk  ,1max
/
 . 

Hence  

  HH
xg

/1

),1max()(    
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Which converges to zero as g(x) converges to zero in 

),,,( sqplM  . 

Now suppose that  n as 0n  

),,,(l xand M sqp  
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For  some 0  this implies that 
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10  If  then convexity of M implies, 
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Since M is continuous where in ),0[  then  
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is continuous at zero .So, there is 10 If  such that 
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Let K be such that    then n>k, we have
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Hence the proof.      
 

Theorem : 1.3 

Let 21,, MMM
 be orlicz function which satisfy  2  

condition and let 21,, sss
 be non-negative real numbers. 

   

  then1,s  If   
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sqplsqpl MMM    
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 then,ss  If 21  ),,,( 2sqplM   

 

Theorem : 1.4 
 

 Suppose that trk 0  for each k. then 

),,(),,( qtlqrl MM   

  ),,(),( sqlql MM   

  ),,,(),,( sqplqpl MM   

 

Proof: 

),,(lLet x M qr  

1). To Prove that  ),,(lx M qt  

Let ),,(lLet x M qr  then there exist some 0  such 

that  
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This implies that 1
x

qM i 






















for sufficiently 

large values of i. 

Since M is non-decreasing we get 
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There fore 
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Hence ),,(lx M qt . 

There fore  ),,(),,( qtlqrl MM   

 

2). To Prove that  ),,(),( sqlql MM   

Let ),(l x M q  

To Prove that  ),,(lx M sq  

 Let ),(l x M q  then there exist some 0  such that  
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for sufficiently 

large values of i. 

Since M is non-decreasing we get 
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There fore 
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Hence ),,(lx M sq . 

There fore  ),,(),( sqlql MM   

 

3). To Prove that  ),,,(),,( sqplqpl MM   

Let ),,(l x M qp  

To Prove that  ),,,(lx M sqp  

Let ),,(l x M qp  then there exist some 0  such 

that  
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This implies that 1
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for sufficiently 

large values of i. 

Since M is non-decreasing we get 
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There fore 
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Hence ),,,(lx M sqp . 

There fore  ),,,(),,( sqplqpl MM   

Hence the proof. 
 

Theorem: 1.5 

1). If 
10  kp

for each k, then  

),(),,( qlqpl MM 
 

2). If 
1kp

for each k, then  

),,(),( qplql MM 
 

 

Proof : 

Let ),,(lx M qp  

To prove that ),(lx M q  

Then there exist some 0  such that  
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for sufficiently large values of i. 

 Since M is non-decreasing we get 
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Hence ),(lx M q  

There fore ),(),,( qlqpl MM   

3). To prove that ),,(),( qplql MM   

Let ),(lx M q  

then there exist some 0  such that  
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for sufficiently large values of i. 

Since M is non-decreasing we get 

 



































 


































 















1

k

1

k

)x(
qM

)x(
qM

k

p

k

s

k

K





 

Therefore  


































 







kp

k

sK
1

k )x(
qM



Hence ),,(lx M qp  

There fore ),,(),( qplql MM   

Hence the proof. 
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