
International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 472

A SURVEY ON LIGHTWEIGHT METHODOLOGY USED FOR

SOFTWARE DEVELOPMENT
Pramod Saxena1, Dr. Manju Kaushik2, Suyash Raizada3

1Department of M.tech (SE), 2Associate Professor (CSE), 3M.tech (SE)

JECRC University

Jaipur, India.

Abstract: Lightweight methodology that utilizes iterative

development and prototyping are widely used in variety

of software industry projects which can satisfy to the

changes of requirements. Little iterations are used that

are required for efficient product delivery. Traditional

software development processes are not much efficient to

manage the rapid change in requirements. Despite the

advantages of Lightweight methodology’s a state that it

fails to pay attention to architectural and design issues

and therefore is bound to produce small design-decisions.

Here, in this paper we identify the impacts that

Lightweight methodology has on software development

processes with respect to quality within the

organizational, methodical, and cultural framework.

Keywords: Agile Alliance, Agile Methodology, Crystal

Method, Extreme Programming, Feature Driven

Development, Scrum, Test Driven Development.

I. INTRODUCTION

In typical software development process it is assumed that all

the requirements are complete and can be implemented

directly in order to develop the application, but this is not the

case for most of the projects today. In modern competitive era

changes are frequent to any software product or module

which is under development, due to the market competitions

priority of requirements changes frequently and only specific

development is done which is urgently required and then later

on changes and improvements comes into the picture for the

rest developed modules. So requirement engineering is done

in parallel to software development and requirement changes

often happen to survive in the competitive market.

Whenever a new requirement comes into the picture it takes

lot of effort in terms of time and cost for analysis and

implementation. Theoretically change requirements takes

less time than typical development requirements but

practically it takes almost the same or even more time as

development for complex change requirements. Since

changes of any type whether simple or complex needs a

complete software development lifecycle, because after

analyzing the requirement it is implemented and integrated

with the existing code and then implemented requirement is

verified against the test cases and also verified against the

functionality required.

Once implementation is done and verified, lot of refactoring

related work is required for making sure that the implemented

code is written in standard format and integrated with the

system as per the development standards. Refactoring is also

an important type of change requirement which sticks the

development policies with the developed code and which

comes into the picture once the development task in bulk is

over. Refactoring improves code, usually increasing the

function while reducing code bulk. However, such

refactoring or restructuring often forces the application to

undergo a complete development cycle, including unit,

acceptance, and regression testing, followed by subsequent

redeployment. In a large IT or engineering production

system, this can be time consuming and error prone.

Lightweight methodology is design for change, without

refactoring and rebuilding. Its objective is to design programs

that are receptive to change. Ideally, Lightweight

methodology lets changes be applied in a simple, localized

way to avoid or substantially reduce major refactoring,

retesting, and system builds.

Lightweight Methodologies are a group of software

development methods that are based on iterative and

incremental development. The four major characteristics that

are fundamental to all lightweight methodologies are:

adaptive planning, iterative & evolutionary development,

rapid and flexible response to change and promote

communication [1, 2]. Its main emphasis is in obeying the

principles of “Light but sufficient” and being people-oriented

and communication-centered. As it is named as lightweight

process, it is more suitable for the development of small

projects [3]. Now we have focus of Agile software

development they were takes the view that production teams

should start with simple and predictable approximations to

the final requirement and then continue to increment the

detail of these requirements throughout the life of the

development. This incremental requirements refinement

further refines the design, coding and testing at all stages of

production activity. In this way, the requirements work

product is as accurate and useful as the final software itself

[4].

The principle of agile software development proposes [5] that

“at regular intervals, the team reflects on how to become more

effective, then tunes and adjusts its behavior accordingly”. In

other terms it may be said that agile methodology addresses

exactly the challenges of an unpredictable, disordered

business and technology environment [6]. Lightweight

methods that include Scrum, Crystal Clear, Extreme

Programming (XP), Adaptive Software Development (ASD),

Feature Driven Development (FDD), and Dynamic Systems

Development Method (DSDM) Crystal, Lean Software

Development etc. [7]. Agile methods break tasks into small

International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 473

increments with minimal planning called Iterations. Iterations

are short time frames that runs from one to four weeks. Each

iteration involves a team working through a full software

development cycle, including planning, requirements

analysis, design, coding, unit testing, and acceptance testing.

This minimizes overall risk and allows the project to adapt to

changes quickly. Most of the agile implementations use a

formal daily face-to-face communication among team

members. In this brief communication, team members report

to each other what they did the previous day, what they intend

to do today, and what are the hurdles they faced When

customer or domain expert works directly with the

development team everyone learns something new about the

problem [9, 10,11].

II. POPULAR LIGHTWEIGHT

METHODOLOGIES

Some of the most commonly used methodologies are

discussed in this section. There are several parameters

associated with the choice of these techniques, some of them

are team size, iteration length and support for distributed

environment. These parameters are also discussed for these

most commonly used techniques here:

A. Extreme Programming (XP)

Extreme programming is a good agile methodology when the

team size is generally small i.e. from 2 to 10. Iteration length

is generally short around 2 weeks. XP is not suitable for

distributed teams. The goal of Extreme programming (XP) is

to improve software quality and responsiveness to changing

customer requirements.

Advantages: Lightweight methods suit small medium size

projects. Produces good team cohesion and emphasizes final

product and Iterative. Test based approach to requirements

and quality assurance.

Disadvantages: Difficult to scale up to large projects where

Documentation is essential and needs experience and skill if

not to degenerate into code-and-fix. Programming pairs is

costly.

B. Scrum

A SCRUM is a Rugby team of eight individuals [15]. The

team acts together as a pack to move the ball down the field.

Teams work as tight, integrated units with a single goal in

mind. In a similar manner, the SCRUM software

development process facilitates a team focus. SCRUM is a

light SDLC methodology for small teams to incrementally

build software in complex environments. SCRUM is most

appropriate for projects where requirements cannot be easily

defined up front and chaotic conditions are anticipated.

SCRUM divides a project into sprints (iterations) of 30 days.

Functionality is defined before a sprint begins. The goal of

the process is to stabilize requirements during a sprint.

Advantages: High amount of risk analysis. Good for large

and mission-critical projects. Software is produced early in

the Software life cycle.

Disadvantages: Can be a costly model to use. Risk analysis

requires highly specific expertise. Project’s success is highly

dependent on the risk analysis phase. It doesn’t work well for

smaller projects.

C. Feature Driven Development (FDD)

Feature Driven Development (FDD) is a model-driven short-

iteration software development process. The FDD process

starts by establishing an overall model shape. This is followed

by a series of two-week “design by feature, build by feature”

iterations. FDD consists of five processes: develop an overall

model, build a features list, plan by feature, and design by

feature, and build by feature. There are two types of

developers on FDD projects: chief programmers and class

owners. The chief programmers are the most experienced

developers and act as coordinator, lead designer, and mentor.

The class owners do the coding. One benefit of the simplicity

of the FDD process is the easy introduction of new staff. FDD

shortens learning curves and reduces the time it takes to

become efficient. Finally, the FDD methodology produces

frequent and tangible results. The method uses small blocks

of user-valued functionality. In addition, FDD includes

planning strategies and provides precision progress tracking.

D. Crystal Method

Crystal methods are based on the principle that how to

achieve a maximum extent by which a written

communication or documents communication can be reduced

to a verbal communication for faster development. All

Crystal methods begin with a core set of roles, work products,

techniques, and notations. There is no limit on team size in

crystal methods. Iteration lengths are large generally 4

months and more. It is built to support distributed team. These

techniques are based on the following four principles:

a) Use larger methodologies for larger teams.

b) Use denser methodologies for more critical projects

c) Interactive, face-to-face communication is most

effective.

d) Weight is costly.

E. Wisdom

The White-water Interactive System Development with

Object Models [16] addresses the needs of small development

teams who are required to build and maintain the highest

quality interactive systems. The Wisdom methodology has

three key components: A software process based on user-

centered, evolutionary, and rapid prototyping model. A set of

conceptual modeling notations that support the modeling of

functional and nonfunctional components. A project

management philosophy based on tool usage standards and

open documentation. Wisdom is comprised of three major

workflows: requirements workflow, analysis workflow, and

International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 474

design workflow. In addition, the methodology is based on

seven models and uses four types of diagrams.

Task flow plays an important role in Wisdom and corresponds

to a technology-free and implementation independent

portrayal of user intent and system responsibilities.

F. DSDM

The Dynamic Systems Development Method (DSDM) is a

framework [8] used to control software development projects

with short timelines. It was developed in 1994 by a consortium

formed by a group companies in Great Britain. The

methodology begins with a feasibility study and business

study to determine if DSDM is appropriate. The rest of the

process consists of three interwoven cycles. These are

functional model iteration, design and build iteration, and

implementation. The underlying principles of DSDM include

frequent deliveries, active user communication, empowered

development teams, and testing in all phases of a project.

DSDM is different than traditional approaches in that

requirements are not fixed. Project requirements are allowed

to change based upon a fixed timeline and fixed project

resources. This approach requires a clear prioritization of

functional requirements. Emphasis is also put on high quality

and adapting to changing requirements. It has the advantage

of a solid infrastructure (similar to traditional methodologies),

while following the principles of lightweight SDLC methods.

G. ASD

It is known as Adaptive Software Development (ASD). It

means we are work on adaptive nature of SDLC

methodologies. They were inherently flawed, in modern

business processes. Adaptive Software Development (ASD)

as a framework from which to address the rapid pace of many

software projects [18]. ASD is grounded in the science of

complex adaptive systems theory and has three interwoven

components: the Adaptive Conceptual Model, the Adaptive

Development Model, and the Adaptive

Management model. In contrast to the typical waterfall (plan,

build, implement) or the iterative (plan, build, revise) life

cycles, the adaptive development life cycle (speculate,

collaborate, learn) acknowledges the existence of uncertainty,

change and does not attempt to manage software development

using precise prediction and rigid control strategies. ASD is

grounded in the science of complex adaptive systems theory

and has three interwoven components: the Adaptive

Conceptual Model, the Adaptive Development Model, and the

Adaptive (leadership-collaboration) Management Model.

These process are work as applications are a closer match to

customer requirements due to constant evolution and business

needs. Than they were development process adapts to

specified quality. Finally they were reduced risk and

established the project.

H. ASP

With the rapid change in the requirements in terms of budget,

schedule, resources, team and technology agile model

responds to changes quickly and efficiently. Agile is an

answer to the eager business community asking for lighter

weight along with faster and nimbler software development

processes [19].

Following are the main principles to implement an agile

model:

a) Agile team and customer must communicate through

face-to-face interaction rather than through

documentation.

b) Agile team and customer must work together

throughout the development.

c) Supply developers with the resources they need and

then trust them to do their jobs well.

d) Agile team must concentrates on responding to

change rather than on creating a plan and then

following it.

e) Emphasis on good design to improve quality.

f) Agile team must prefer to invest time in producing

working software rather than in producing

comprehensive documentation.

g) Satisfy the customer by “early and continuous

delivery of valuable software”.

III. LITERATURE REVIEW

Various studies and surveys have been made that shows

Lightweight methodology’s popularity based on

characteristic of requirements, small or big organization, and

experience of the project team. Lightweight methods have

proven their effectiveness and are transforming the software

industry. A high percentage of software development efforts

have no process and might best be described as a chaotic

“code and fix” activity. Light SDLC techniques are a

compromise between no process and too much process. In the

following sections, literature related to nine types of

lightweight SDLC methodologies is discussed. Some of the

A Survey on Lightweight methodology are presented here.

As demonstrated by Andrew et al [1] using a survey based

approach, agile methodology is favorable due to improved

communication between team members, quick releases and

flexibility of designs. Scrum methodology is the most

popular; and test driven development and pair programming

are the least used practices.

As demonstrated by A. Ahmed et al [9], scrum is used most

commonly, 50% of the projects are done with active

stakeholder participation. 66.7% participants were agreeing

that productivity has improved and quality is improved by

50%.

Based on a study, Pirjo et al [8] shows that agile methods are

good for some programming environments, but not for all.

Projects that involve large teams, well-defined requirements,

clients needing high assurance and large code-bases, the

traditional plan-oriented project profile works well.

Therefore, Agile methods produces best results in case of

when the team is small, the requirements are not yet well

defined, the project code base is small and the customer is

International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 475

interested in seeing significant progress. However, as a

software project transitions from a small prototype to a large

stable system with a large team, with promises to keep and

dates to meet, then agile methods alone is not sufficient then

some additional mechanism is needed.

Tore et al [14] report that XP is seemed difficult to introduce

in large, complex organizations but easier in other

organization types. Pair programming is inefficient and XP

works best with experienced development teams. Also there

is lack of attention to design and architectural issues.

Behrouz Far [12] mapped the software reliability engineering

into an agile development process. As per the study, test

driven development seems to be incompatible with the

reliability model.

Markus et al [13] highlights the negative impact of change in

requirements on customer satisfaction. The main contribution

of their paper pertains to the interaction effects between

change in requirements and agile methods on customer

satisfaction. They found that work climate, final product

adaptability and willingness to adapt to change have a

positive moderating effect on the relationship between

change in requirements and customer satisfaction.

The study performed by Sharifah Syed et al [14] shows that

agile methodology is more people-oriented than process

oriented in a more volatile environment. Excepting the

satisfaction of the developers this is helpful only when the

requirements are uncertain or volatile.

IV. BENEFITS OF LIGHTWEIGHT METHODOLOGY

IN SOFTWARE DEVELOPMENT

The key benefits of lightweight methodology in software

development due to which lightweight (agile) methodology

should be adopted while developing software are shown in

the figure1 and explained in detail thereafter.

1. Requirements Changes: Planning phase is dramatically

improved. First, because customers are directly

involved in the development process, that is, customers

control the processes of projects through on-site

interaction, requirements truly reflect the current needs

of the end users.

2. Testing and Problem Detection: As testing is performed

during each iteration, faults are detected earlier and can

be fixed before it increases in severity than with a plan-

driven process model. Also, continuous testing allows

continuous testing feedback, which further improves

code developed in future iterations.

3. Increased Performance: Daily standup meetings

provide an opportunity to exchange valuable

information and to fine tune improvements

continuously. The ability to discuss complex projects

through simple stories and simple design encourages

teamwork. Better communication leads to increased

knowledge sharing, self-organizing teams, and team

morale as employees begin to trust and gain the trust of

their team members. This increases team productivity

and generates better performance in terms of good

Return on Investment than the sum of all individual

output.

Fig.1. Software Development Methodologies with

Benefits

4. Iterative and incremental delivery: Project delivery is

divided into small functional releases or increments to

manage risk and to get early feedback from customers

and end users. These small releases are delivered on a

schedule using iterations that typically last between one

and four weeks each. Plans, requirements, design, code

and tests are created initially and updated incrementally

as needed to adapt to project changes. Software

functionality progress can be checked and monitored

much more frequently rather than at end of long

milestones.

5. Flexibility of Design: Flexibility defines ability to

change directions quickly. As handling change in

requirements is the main feature of agile methodology,

design has to be made flexible that can handle changes

easily. Flexibility is based on the development process

used for the project.

6. Improvement in Quality: Test-driven development and

refactoring is used. Refactoring leads to higher code

reuse and better quality. All aspects of software are

improved, from design and architecture to performance

of the products of each sprint. Improved communication

leads to faster turnaround time for blocking bugs.

V. LIMITATION OF LIGHTWEIGHT

METHODOLOGY

a) Main emphasis is on development rather than design

and user. It basically focuses on processes for

getting requirements and developing code and does

not focus on product design.

b) High testing lead times and low test coverage.

c) Many teams requiring high coordination and

communication from project managers.

d) Does not scale well to large projects, as numerous

iterations are needed to complete the desired

functionality.

International Journal For Technological Research In Engineering

Volume 1, Issue 7, March-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2013.All rights reserved. 476

e) Too much time may be devoted to any single, small

feature.

f) On a large scale project, opportunity cost to employ

agile methods may be too high for a foregone

production on more profitable and lean projects.

g) Management Overhead is increased because a

successful application of an agile methodology

relies heavily on strong teamwork, the project

manager must remain involved in the dynamics of

the team.

VI. CONCLUSION

Lightweight software development stresses in - evolving

requirements accomplished by direct user involvement in the

development process, rapid iterations, small and frequent

releases. The improvements in software development process

include more stable requirements, earlier fault detection, less

lead times for testing, increased communication, and

increased adaptive capacity. Different methodologies require

different changes to the management and software

development cultures .There are number of factors that can

directly and indirectly influence the development projects in

agile framework. Adopting agile development methodologies

has a positive impact on both the productivity and the quality.

Hence, development team and customer both are satisfied with

its implementation in software development processes.

REFERENCES

[1] Andrew Begel, Nachiappan Nagappan, “Usage and

Perceptions of Agile Software Development in an

Industrial Context: An Exploratory Study”, First

International symposium on empirical software

engineering and measurement, pp. 255-264, 2007.

[2] Peter Maher, “Weaving Agile Software

Development Techniques into a Traditional

Computer Science Curriculum”, Proc. of 6th IEEE

International Conference on Information

Technology: New Generation, pp. 1687-1688, 2009.

[3] Anfan Zuo, Jing Yang, Xiaowen Chen, “Research of

Agile Software Development Based on Formal

Methods”, International Conference on Multimedia

Information Networking and Security, pp. 762-766,

2010.

[4] Michael J Rees, “A Feasible User Story Tool for

Agile Software Development”, Proc. Of 9th Asia-

Pacific Software Engineering Conference (APSEC’

02), 2002.

[5] Outi Salo, Pekka Abrahamsson, “Integrating Agile

Software Development and Software Process

Improvement: a Longitudinal Case Study”, pp. 193-

202, 2005.

[6] Richard Mordinyi, Eva Kuhn, Alexander Schatten,

“Towards an Architectural Framework for Agile

Software Development”, 17th IEEE International

Conference and workshops on Engineering of

Computer Based Systems, pp. 276- 280, 2010.

[7] Ying Wang, Dayong Sang, Wujie Xie, “Analysis on

Agile Software Development Methods from the

View of Informationalization Supply Chain

Management”, 3rd International Symposium on

Intelligent Information Technology Application

Workshops”, pp. 219-222, 2009.

[8] Pirjo Nakki, Kaisa Koskela, Minna Pikkarainen,

“Practical model for user-driven innovation in agile

software development”, Proc. Of 17th International

Conference on Concurrent Enterprising, pp. 1-8,

2011.

[9] Agile Alliance, http://www.agilealliance.org/

[10] Agile Manifesto and Agile Principles,

http://agilemanifesto.org/

[11] “Agile Software Development” Wikipedia,

http://en.wikipedia.org/wiki/Agile_software_devel

opment

[12] Behrouz Far, “Software Reliability Engineering for

Agile Software Development”, pp. 694-697, IEEE

2007.

[13] Markus Kohlbacher, Ernst Stelzmann, Sabine

Maierhofer, “Do Agile Software Development

Practices Increase Customer Satisfaction in Systems

Engineering Projects?” IEEE International Systems

Conference (SysCon), pp. 168 - 172 IEEE 2011.

[14] Sharifah Syed-Abdullah & Mike Holcombe &

Marian Gheorge, “The Impact of an Agile

Methodology on the Well Being of Development

Teams”, Empir Software Eng, pp. 143-167, Springer

2006.

[15] Linda Rising and Norman S.Janoff, AG

Communication Systems, “The Scrum Software

Development Process for Small Teams, IEEE

Software July/August 2000.

[16] Nuno Jardim Nunes, João Falcão e Cunha” Wisdom

- Whitewater Interactive System Development with

Object Mode Version 4.0 / 21 April 2000.

[17] Rietmann: DSDM in a bird’s eye view, DSDM

Consortium, p. 3-8 (2001).

[18] Cook, J.E., and A.Wolf, “Discovering models of

software processes from event-based data”, ACM

Trans. Softw. Eng. Methodol, 7(3), 215 – 249,

(1998).

[19] “Scrum Agile Model” available at:

http://www.rightwaysolution.com/scrum-agile

development- model.html accessed on: 24/04/2011.

http://www.rightwaysolution.com/scrum-agile

