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Abstract: This project propose a segmentation of 

gastroenterology image of cancer infected stomach which is 

taken using Chromo endoscopy (CH).Traditional computer 

system segmentation do not detect the characteristics of 

infected region. Gastroentrology imaging is an essential 

tool to detect gastrointestinal cancer in patients. From the 

gastroenterology physician can analysis the internal 

organs. Initially finding the boundary of the infected area 

by the process called active contour or snakes. By using the 

various visual features like edge maps, creaseness and 

colour in normalised cuts segmentation framework we are 

segmenting the affected area in stomach. On integration of 

these visual features gives the best image segmentation 

performance resulting in high quality. 

Keywords- Clustering, Cancer, Chromo endoscopy, 

Normalized Cuts, Gastroentrology. 

 

I. INTRODUCTION 

The field of digital image processing refers to processing 

digital images by means of a digital computer [1]. Note that a 

digital image is composed of a finite number of elements, 

each of which has a particular location and value [4]. These 

elements are referred to as picture elements, image elements, 

pels, and pixels. Pixel is the term most widely used to denote 

the elements of a digital image. Vision is the most advanced 

of our senses, so it is not surprising that images play the 

single most important role in human perception [3]. 

However, unlike humans, who are limited to the visual band 

of the electromagnetic (EM) spectrum, imaging machines 

cover almost the entire EM spectrum, ranging from gamma 

to radio waves. They can operate on images generated by 

sources that humans are not accustomed to associating with 

images. These include ultrasound, electron microscopy, and 

computer-generated images. Thus, digital image processing 

compasses a wide and varied field of applications [5]. There 

is no general agreement among authors regarding where 

image processing stops and other related areas, such as image 

analysis and computer vision, start. Sometimes a distinction 

is made by defining image processing as a discipline in 

which both the input and output of a process are images. The 

processes of acquiring an image of the area containing the 

text, pre-processing that image, extracting or segmenting the 

individual characters, describing the characters in a form 

suitable for computer processing, and recognizing those 

individual characters are in the scope of what we call digital 

image processing. Antonio M. Lopez, Felipe Lumbreras, 

Joan Serrat, and Juan J. Villanueva [15] proposed a  

 

evaluation of methods for ridge and valley detection. Ridges 

and valleys are useful geometric features for image analysis. 

Different characterizations have been proposed to formalize 

the intuitive notion of ridge or valley. In this paper, we 

review their principal characterizations and propose a new 

one. Subsequently, we evaluate these characterizations with 

respect to a list of desirable properties and their purpose in 

the context of representative image analysis tasks. In image 

analysis, the ridge or valley characterizations must be 

evaluated with regards to their usefulness in specific 

applications. This paper assesses the merits of the main 

characterizations by testing them in several types of image 

analysis problems. To find the creaseness first finds it 

maxima and minima of the image. These maxima are 

connected from one level to the next, forming a subset of the 

so-called vertex curves. This paper put more concentration 

on multi local creaseness like structure tensor. Creases can 

be also obtained by thresholding a creaseness measure. The 

ridge valley detection based on vertex condition is 

unsatisfactory, due to the high number of irrelevant branches 

joining the main centerline. Some of these branches are 

artifacts due to the high order of the derivatives involved in 

the vertex condition. Inderjit S. Dhillon, Yuqiang Guan and 

Brian Kulis [12] proposed a Kernel kmeans, Spectral 

Clustering and Normalized Cuts. To identify clusters those 

are non-linearly separable in input space. Despite significant 

research, these methods have remained only loosely related. 

In this paper, we give an explicit theoretical connection 

between them. We show the generality of the weighted 

kernel k-means objective function, and derive the spectral 

clustering objective of normalized cut as a special case. 

Given a positive definite similarity matrix, our results lead to 

a novel weighted kernel k-means algorithm that 

monotonically decreases the normalized cut. This has 

important implications: eigenvector-based algorithms, which 

can be computationally prohibitive, are not essential for 

minimizing normalized cuts, various techniques, such as 

local search and acceleration schemes, may be used to 

improve the quality as well as speed of kernel k-means. 

Finally, we present results on several interesting data sets, 

including diametrical clustering of large general expression 

matrices and a handwriting recognition data set. Spectral 

clustering has emerged recently as a popular clustering 

method that uses eigenvectors of a matrix derived from the 

data. To speed up the distance computation in our weighted 

kernel k-means algorithm, we can adapt the pruning 

procedure. The k-way normalized cut problem is to minimize 
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the links that escape a cluster relative to the total weight of 

the cluster. The traditional k-means objective function can be 

recast as a trace maximization problem of the Gram matrix 

for the original data. Sergio Veral, Debora Gill, Antonio 

Lopez and Miguel Gonzalez proposed a Multi local 

Creaseness Measure. Ridges and valleys are relevant image 

descriptors on image analysis used in several tasks of image 

processing and computer vision, such as centerline 

calculation, shape representation, and segmentation among 

others. The information of the Structure Tensor allows the 

computation of the predominant direction of change around a 

point in the image. Ridges of the distance map can be used to 

calculate the skeleton of arbitrary shapes and volumes. It is 

templated over the input image and the output image, 

although the only required template is the input image. 

Because of that the operator is highly discriminant. Creases 

have positive for ridges and negative for valleys responses. 

Those responses have similar value for creases of similar 

steepness, thus allowing the binarization of the creaseness 

map using a simple threshold. One of the most useful states 

that ridges or valleys are extream of curvature of the level 

curves of the landscape. The idea holds for N dimensional 

images, since we can always define the concept of level 

hyper surfaces and, thus, their extrinsic curvature. However, 

the fact that such definition is too local, gives rise to different 

problems due to the discrete nature of images. 

 

II. PROPOSED SYSTEM 

The proposed methodology is applied to the scenario of 

segmentation of GE images from imaging modality, CH 

(chromo endoscopy) from stomach. The use of multiple 

image features including edge maps, creaseness, and color 

features to further enhance the segmentation. The system 

uses normalized cuts (NCut) for the segmentation of GE 

images. 

 

A. Active Contour 

Active contour [13] model, also called snakes, is a 

framework for delineating an object outline from a possibly 

noisy 2D image. This framework attempts to minimize an 

energy associated to the current contour as a sum of an 

internal and external energy. The external energy is supposed 

to be minimal when the snake is at the object boundary 

position. The most straightforward approach consists in 

giving low values when the regularized gradient around the 

contour position reaches its peak value.The internal energy is 

supposed to be minimal when the snake has a shape which is 

supposed to be relevant considering the shape of the sought 

object. The most straightforward approach grants high energy 

to elongated contours and to bended/high curvature contours, 

considering the shape should be as regular and smooth as 

possible. The snake’s model is popular in computer vision, 

and led to several developments in 2D and 3D. In two 

dimensions, the active shape model represents a discrete 

version of this approach, taking advantage of the point 

distribution model to restrict the shape range to an explicit 

domain learned from a training set.  Snake is an energy 

minimizing, deformable spline influenced by constraint and 

image forces that pull it towards object contours. Snakes are 

greatly used in applications like object tracking, shape 

recognition, segmentation, edge detection, stereo matching.  

Snakes may be understood as a special case of general 

technique of matching a deformable model to an image by 

means of energy minimization. Snake is an active model as it 

always minimizes its energy functional and therefore 

exhibits dynamic behavior. One may visualize the snake as a 

rubber band of arbitrary shape that is deforming with time 

trying to get as close as possible to the object contour. 

Snakes do not solve the entire problem of finding contours in 

images, but rather, they depend on other mechanisms like 

interaction with a user, interaction with some higher level 

image understanding process or information from image data 

adjacent in time or space. In general snake is placed near the 

object contour. It will dynamically move towards object 

contour by minimizing its energy iteratively. In Snakes, we 

use the technique of matching a deformable model to an 

image by means of energy minimization. A snake initialized 

near the target gets refined iteratively and is attracted 

towards the salient contour. A snake in the image can be 

represented as a set of n points. 

vi = (xi, yi)                                                                  

(4.1)  

where   

We can write its energy function as 

E*snake = ∫                 
 

 
 = ∫            (    )  

 

 

    (    )      (    )               (4.2)   

E external = E image + E conv                                                       (4.3)

  

where  represents the internal energy of the 

spline (snake) due to bending, E image denotes the image 

forces acting on spline and Econv serves as external constraint 

forces introduced by user. The combination of E image 

and Econv   can be represented as E external, that denote the 

external energy acting on the spline. 

 

B. Internal energy 

Internal Energy of the snake is  

E internal = E cont + E curv                                                                             (4.4) 

                                        

Where E cont denotes the energy of the snake contour and E 

curv denotes the energy of the spline curvature. 

E internal = (     |     |2 
+     |      |2 

∕ 2                   (4.5) 

 

The first order term makes the snake act like a membrane 

and second order term makes it act like a thin plate. Large 

values of α(s) will increase the internal energy of the snake 

as it stretches more and more, whereas small values of α(s) 

will make the energy function insensitive to the amount of 

stretch. Similarly, large values of β(s) will increase the 

internal energy of the snake as it develops more curves, 

whereas small values of β(s) will make the energy function 

insensitive to curves in the snake. Smaller values of both α(s) 

and β(s) will place fewer constraints on the size and shape of 

the snake. 

 

http://en.wikipedia.org/wiki/Spline_(mathematics)
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C. Image forces 

Further, E image has three components: 

 Lines 

 Edges  

 Terminations 

The energies can be represented as follows: 

E image = w line E line + wedge E edge + w term E term                               

(4.6) 

Adjusting the weights in the image will determine salient 

features in the image which will be considered by the snake. 

 

D. Line functional 

A line functional is nothing but the intensity of the image, 

which can be represented as, 

E line = I(x, y)                                   (4.7)                                                  

Depending on the sign of w line, the line will be attracted to 

either dark lines or light lines. 

 

E. Edge functional 

1. Image gradient 

Edges in the image can be found by the following energy 

function which will make the snake attract towards contours 

with large image gradients. 

E edge                   2   
                                                 (4.8) 

 

2. Scale space 

It is rather common that a snake started far from the object 

converges to the desired object contour. If a part of the snake 

finds a low energy feature, it pulls the other parts of the snake 

to continue to the contour. Scale Space continuation can be 

used in order to achieve desired results. One can allow the 

snake to come to equilibrium on a blurry energy edge 

functional and reduce the blurring as the calculation 

progresses. The energy functional is 

E edge    Gσ *  2 I 2                                                 (4.9) 

Where Gσ is a Gaussian standard deviation minimum of 

this functional lie on zero-crossings of Gσ *  2 I which 

define edges in Marr- Hildreth Theory[3]. Thus the snake 

gets attracted towards zero-crossing constrained by its own 

smoothness. 

 

3. Termination functional 

Curvature of level lines [11] in a slightly smoothed image is 

used to detect corners and terminations in an image. Let C(x, 

y)   Gσ * I (x, y) be a slightly smoothed version of the 

image. Let          Cy / Cx ) be the gradient angle.                                           

Let n= (cos  , sin  ) and n┴   (- sin  , cos  ) be unit vectors 

along and perpendicular to the gradient direction. The 

termination functional of energy can be represented as 

E term = 
   

   
 = CyyCx2 – 2CxyCxCy + CxxCy2 / (Cx2 

+Cy2)3/2    (4.10) 

 

4. Constraint energy 

Some systems, including the original snakes implementation, 

allowed for user interaction to guide the snakes, not only in 

initial placement but also in their energy terms. Such 

constraint energy  can be used to interactively guide 

the snakes towards or away from particular features. 

 

5. Advantages of active contour 

Snakes have multiple advantages over classical feature 

attraction techniques. 

 Snakes are autonomous and self-adapting in their 

search for a minimal energy state. 

 They can be easily manipulated using external 

image forces. 

 They can be made sensitive to image scale by 

incorporating Gaussian smoothing in the image 

energy function. 

 They can be used to track dynamic objects in 

temporal as well as the spatial dimensions. 

 

F. K-Means Clustering 

K-Means algorithm is an unsupervised clustering algorithm 

that classifies the input data points into multiple classes 

based on their inherent distance from each other. The 

algorithm assumes that the data features form a vector space 

and tries to find natural clustering in them. The points are 

clustered around centroids µi for all i = 1: k which is 

obtained by minimizing the objective. 

V=∑ ∑              
 
   

2
                                              (4.11) 

Where there are k clusters Si, i = 1, 2,….k and µi is the 

centroid or mean point of all the points xj€Si.  As a part of 

this project, an iterative version of the algorithm was 

implemented.  

 

G. Algorithm 

The algorithm takes a 2 dimensional image as input. Various 

steps in the algorithm are as follows: 

1. Compute the intensity distribution (also called the 

histogram) of the intensities. 

2. Initialize the centroid with k random intensities. 

3. Repeat the following steps until the cluster labels of the 

image do not change anymore. 

4. Cluster the points based on distance of their intensities 

from the centroid intensities. 

5. Compute the new centroid for each of the clusters. 

 

H. Normalised Cuts 

Let G = (V;E) be an undirected weighted graph [10] with a 

set of vertices V and a set of unordered pairs of edges E, 

where each (i; j) 2 E has an associated weight wij . The 

weight, wij indicates the strength of the connection, or edges, 

between node i and j. A strong connection between node i 

and j would have a high wij value, and vice versa. A strong 

connection between groups of nodes generally indicates that 

these nodes are very similar and belong as one cluster. 

The graph G can be segmented into two disjoint subsets of 

the graph, G1 and G2, if we remove the connecting edges 

between the sets G1 and G2. In graph theory, the removal of 

these edges, or a cut, is a partition of graph vertices into two 

disjoint subsets. The cut of a weighted graph G into two 

disjoint subsets G1 and G2 is defined as: 

http://en.wikipedia.org/wiki/Zero_crossing
http://en.wikipedia.org/wiki/Marr-Hildreth_algorithm
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Cut (G1, G2) = ∑                                                     (4.12) 

Generally, two different graph clusters with weak 

connections between them will have a small cut value if we 

partition them. Usually, the goal of segmentation is to find a 

set of clusters that correspond to low cut values. The degree 

of a vertex, or 3 nodes, in a weighted graph is the total weight 

of the edges incident to the node. Let di be the degree of a 

node i in the graph. Then: 

di = ∑                                                                             (4.13) 

The volume of a subset G1 of a weighted graph represents 

how dense the subset G1 is in terms of its edge weights. In 

general, a high volume value indicates that the connections 

within the subset are strong. Let vol (G1) be the volume of 

the subset G1 

vol(G1) = ∑                                                                (4.14) 

Normalized Cut is given as: 

Ncut (G1, G2) = 
           

        
  

           

        
                         (4.15) 

The Normalized Cut Algorithm minimizes the Normalized 

Cut (NCut) criterion. 

In general, for two different graph clusters, strong internal 

connections within the clusters indicate similar grouped 

nodes and weak connections between these clusters indicate 

that these two clusters are different. Intuitively, by 

minimizing the normalized cut criterion for groups G1 and 

G2, we find a cut such that the connections between the 

newly partitioned groups are weak and that the nodes are 

evenly distributed so that the internal connections for the new 

groups are both evenly strong. By minimizing the normalized 

cut criterion for G1 and G2, we try to find new balanced 

partitions that give a small cut value and strong internal 

connections for both the partitions at the same time. In 

solving this minimization problem in , let D be an N x N 

diagonal matrix with degree d on its diagonal. Let W be an N 

x N symmetrical matrix with W(i; j) = wij . The W matrix is 

known as the affinity matrix. Nodes with high affinity will 

have high weight values, while nodes with low affinity will 

have low weight values. The NCut criterion in can be solved 

by solving the following generalized eigen value system: 

(D  -  W)x = Dx                                                                   (4.16) 

The second smallest eigenvector of the generalized eigen 

system is the real valued solution to the NCut problem. 

 

1. The Recursive Two-way NCut Algorithm 

Let the image we are trying to segment be the set of pixels I. 

1. Given the set of features, construct a weighted graph G = 

(V;E), compute the edge weights W(i; j). In this application, 

the image I is the graph, and the pixels are the nodes. 

Calculate the corresponding D matrix. 

2. Solve (D-W)x = Dx for eigenvectors with the smallest 

eigenvalues. 

3. Select the eigenvector with the second smallest eigenvalue 

to bipartition the graph by finding the splitting point such that 

the NCut criterion is minimized. 

4. Decide if the current partition should be subdivided by 

checking the stability of the cut, and make sure that NCut is 

below the prespecified threshold. 

5. Recursively repartition the segmented parts if necessary 

given the number of segments specified by the user. 

 

2. Constructing the Affinity Matrix 

We need to define the edge weights wij prior to starting the 

recursive two-way NCut Algorithm. In the original NCut 

algorithm, each entry wij in the affinity matrix W is 

constructed as follows 

 

wij = e 
-|| F(i) – F(j)||2 

/ σF  *   e 
-|| X(i) – X(j)||2 

/ σx       if || X(i) -  X(j)||
2 

<R 

                       0             otherwise                      (4.17) 

 

 

where 

 X(i) is the spatial location of node i. 

 F(i) is a feature vector based on intensity, color, or 

texture information of node i.  

 σF;σX are feature and spatial tuning parameters 

respectively. 

For a black and white image, the feature (sometimes called 

intensity) of a pixel i, F(i), takes values between 0 (black) 

and 255 (white). Note that, the weight wij = 0 for any pair of 

pixels i and j that are lying more than R pixels apart. 

 

III. SIMULATION RESULTS AND DISCUSSIONS 

A. Input image 

 
Figure 3.1 Input Image 

Figure 3.1 shows the input image of cancer affected stomach. 

The size of the original image is 169X159. Then the image is 

resized into 512x512. This original image is getting from the 

biopsy using the chromoendoscopy technique. 
 

 

Figure 3.2 140 Iteration process 
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Figure 3.2 shows the image under active contour of 140 

iteration. Active contour is initially used to find the boundary 

of the infected area. 

 
Figure 3.3 K-means clustering 

Figure 3.3 shows the clustering output using k-means. This k-

means clustering is based on the divisive clustering. Here k is 

taken as 4 and dividing iteratively using the centroid 

calculation. 

 
Figure 3.4 Original image vs preprocessed image 

Figure 3.4 shows the comparision between the original image 

and pre-processed image. Original image is processed to 

avoid out of memory error. 

 
Figure 3.5 Balanced Ncuts 

Figure 3.5 shows the balanced Ncuts 1 image and balanced 

Ncuts 2 image. This segment the image into two balanced 

image. 

 
Figure 3.6 Second level partitioning 

Figure 3.6 shows the small Ncuts image. In second level 

partitioning the image is divided into four small Ncuts 

images or four sub graphs. 

 
Figure 3.7 Third level bi-partioning 

Figure 3.7 shows the third level bi-partioning image.This 

divides the image into eight subgraphs. 

 
Figure 3.8 Edge map 

Figure 3.8 shows the edge mapping of an image. It maps the 

edges of an image at three levels. They are fine stage, 

medium stage, and coarse stage. These variations are based 

on the richness of the texture. 
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Figure 3.9 RGB to lab image in row 

Figure 3.9 shows the rgb to lab image in rows. This gets an 

image in the CIELAB colour. Space and tone maps it 

according to the parameters.  

 
Figure 3.10 RGB to lab image in coloumn 

Figure 3.10 shows the rgb to lab image in column. This gets 

an image in the CIELAB color. Space and tone maps it 

according to the parameters. 

 
Figure 3.11 Luminance image 

Figure 3.11 shows the luminance image. It describes the CH 

image with luminance component. Luminance image is 

usually in light color. Color extracting feature is done by 

using the color space L*U*V*. 

 
Figure 3.12 Chrominance image 

Figure 3.12 shows the chrominance image. It describes the 

CH image with luminance component. Chrominance image 

is usually in dark color. Color extracting feature is done by 

using the color space L*U*V* which is defined by the CIE 

(Commission Internationale de Eclairage). 

 
Figure 3.13 Creaseness 

Figure 3.13 shows the creaseness of  image. This describes 

creaseness of an image at three stages namely fine, medium, 

coarse stage respectively. Creaseness is determined using the 

special descriptor named as multilocal level set extrinsic 

curvature with enhancement by structure tensor (MLSEC-

ST) operator. 

 
Figure 3.14 Final edge of cancer 

Figure 3.14 shows the area of cancer in the image. The white 

region describes the affected area in stomach. This is done 

by combining the visual features with the normalized cuts 

algorithm. 

 

IV. CONCLUSION 

Image segmentation is an essential component of CAD 

systems for diagnosis of cancer in GE imaging. It is a 

challenging problem given the dynamics of imaging 

conditions and imaging modalities that add to the difficulty 

of computer-vision-based tasks for assisted decision making. 

A wide variety of methods are available that can be used for 

segmentation of GE images. However, we chose NCut given 

their robustness to noise, ability to avoid over segmentation 

for high textured images due to a global optimization 

criterion, and their ability to accommodate various visual 

features based on the nature/contents of the images. We have 

proposed the novel integration of creaseness features in NCut 

image segmentation framework to improve the quality of the 

resulting image segments as compared to the usage of state-

of-the-art multiscale edgemaps. The novel methodology is 

motivated by the ability of creaseness to enhance directional 

gradients in the images while suppressing the local texture in 

the images. In GE images, the directional gradient is 

typically found around the clinically relevant region in the 

image; thus, we have a good chance of getting very 

meaningful segmentation when creaseness is integrated in 
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NCut framework. In future the performance of three popular 

segmentation algorithms when applied to two distinct in-

body imaging scenarios: chromoendoscopy and narrow-band 

imaging. Observation shows that the model-based algorithm 

did not perform well, when compared to its segmentation by 

clustering alternatives. Normalized cuts obtained the best 

performance although future work hints that texture 

similarity should be further explored in order to increase 

segmentation performance in this type of scenarios. 
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