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Abstract: Turbo coding is an influential method of channel 

coding in telecommunications. The introduction of the 

turbo principle allowed close approach to the Shannon 

limit, a theoretical boundary describing the maximum 

capacity of a noisy communication channel. The invention 

of the turbo codes and its superior performance in practical 

applications also initiated a renaissance of channel coding 

research. The exceptional performance of the turbo codes 

can be further improved by finding right settings for a 

particular system. Among others, the structure of the 

interleaver performing a permutation of input bits is one 

important property of any turbo code system. In this paper, 

we present genetic algorithms and particle swarm algorithm 

as two promising optimization methods to find a well 

performing turbo code interleaver. 

Index terms: dfree, BER, interleaver, GA and PSO. 

 

I. INTRODUCTION 

The turbo codes were introduced by Berrou, Glavieux and 

Thitimajshima in 1993 [1] and they have become a hot topic 

soon after their introduction. Prior to the turbo codes, 3dB or 

more separated the spectral efficiency of real world channel 

encoding systems from the theoretical maximum described 
by Shannon theorem [1].Turbo coding brought to the world 

of channel encoding one important principle: the feedback 

concept, exploited heavily in electronics, to be utilized in 

decoding of concatenated codes and it was indeed the 

iterative decoding (the actual turbo principle) that helped the 

turbo codes to achieve its impressive near-optimum 

performance [1]. The performance of the turbo codes 

depends on two principal parameters; the first is the code 

spectrum and the second is the decorrelation between the 

external information at the same number of iterations. The 

optimization process can be used for of the matrix stature the 
amelioration of performance and the dimilution with safe 

performance. The latter is very interesting for multimedia 

real-time satellite transmission systems because the 

interleaving matrix causes a considerable dimilution of the 

codec complexity and delay. The original turbo coder [1] [2] 

was designed as a parallel concatenation of two circular 

recursive systematic convolutional codes. The key 

component that differentiates turbo codes from other 

concatenated codes is the interleaver, which permutes the 

input frame before it is processed by the second encoder. The 

interleaver acts as a pseudorandom block scrambler defined 

by a permutation with no repetitions [2]. One of the key 
principles behind the performance of turbo coding is the fact  

 
that each of the encoders typically produces a high-weight 

code word for most inputs, but it produces a low-weight (i.e. 

more error prone) code word for only few inputs. The 

interleaver makes it more unlikely that both encoders will 

output a bad code word for the same input, increasing the 

probability that the decoder will be able to extract the correct 

information. An interleaver is implemented by an interleaver 

matrix. Interleaver of the dimension N performs a hardware 

permutation of N input bits but it can be modelled as a 

general permutation of N symbols. Interleaver sizes vary 

from tens to tens of thousands. When searching for an 
optimal interleaver, it is computationally infeasible to test all 

possible interleaver matrices (N!) and all possible input 

vectors (2N) to find a globally best interleaver. Therefore, 

advanced interleaver optimization methods are sought. A 

search for an permutation of N symbols is a typical 

combinatorial optimization problem.     

 

A. Interleaver evaluation 

Turbo code performance can be evaluated by means of bit 

error rate (BER), the ratio of incorrectly decoded bits to the 

number of all bits of information transmitted during some 

period. It is hard to compute the BER for a turbo code and 
the simulations can be inaccurate for longer interleavers. If 

simulations are performed, particular model of the noisy 

communication channel must be used. The additive white 

Gaussian noise (AWGN) channel is popular model for 

telecommunication research. It is a good model for satellite 

and deep space communication links [3].Rayleigh fading 

channel is a reasonable model for tropospheric and 

ionospheric signal propagation as well as the effect of 

heavily built-up urban environments on radio signals [3]. An 

alternative to simulations represents analytical estimation of 

code error floor. The error floor of a C (n, k) code can be 
analytically estimated. 

      BER ≈
𝑤𝑓𝑟𝑒𝑒

2𝑘
 erfc (√dfree

𝑘

𝑛

𝐸𝑏

𝑁0
)                                   (1) 

where erfc is complementary error function. To estimate 

BER, the following code properties must be known [4]: 

 dfree - the free distance, i.e. the minimum number 

of different bits in any pair of codewords 

 Nfree-the free distance multiplicity, i.e. the number 

of input frames generating codewords with dfree 

 wfree -  the information bit multiplicity, i.e., the 
sum of the Hamming weights of the input frames 

generating the codewords with dfree 
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There are several algorithms for free distance evaluation. 

Garello et al. [4] presented an algorithm designed to 

effectively compute free distances of large interleavers with 

unconstrained input weight based on constrained subcodes.  
 

II. GENETIC ALGORITHMS 

Genetic algorithms (GA) are a well known population based 

metaheuristic soft optimization method [5]. Gas solves 

complex optimization problems by programmatic evolution 

of an encoded population of candidate problem solutions. 

The solutions are ranked using a problem specific fitness 

function. The artificial evolution is implemented by iterative 

application of genetic operators and leads to discovery of 

above average solutions. The basic workflow of the standard 

generational GA is shown in Algorithm 1. 

1 Define objective (fitness) function and    problem encoding; 
2 Encode initial population P of possible solutions as fixed 

length strings; 

3 Evaluate chromosomes in initial population using objective 

function; 

4   while Termination criteria not satisfied do 

5    Apply selection operator to select parent  chromosomes 

for reproduction: 

 sel(Pi)  parent1, sel(Pi)  parent2; 

6 Apply cross-over operator on parents with  respect to cross 

over probability to produce new chromosomes: cross (pC, 

parent1, parent2)  {of f spring1, of f spring2}; 
7 Apply mutation operator on off spring  chromosomes 

with respect to mutation  probability: mut(pM, off spring1) 

 off spring1, mut(pM, off spring2)  off spring2; 

8 Create new population from current  population and 

offspring chromosomes: migrate (offspring1, off 

spring2,Pi)  Pi+1; 

9   end Algorithm 1: A summary of genetic algorithm 

The algorithm is shown in the flow chart below in Fig.1. 

 
Fig.1: Flow chart of GA 

 

Problem encoding is an important part of genetic search. It 

translates candidate solutions from the problem domain 

(phenotype) to the encoded search space (genotype) of the 
algorithm and defines the internal representation of the 

problem instances used during the optimization process. The 

representation specifies chromosomes data structure and the 

decoding function [6]. The data structure defines the actual 

search space, its size and shape. The choice of encoding also 

affects the set and implementation of applicable evolutionary 

operators. Encoding and evolutionary operators are closely 

connected because the operators operate on the data structure 

defined by the encoding [7]. Certain encodings, such as 

direct encoding of permutation, disable the application of 

crossover operator. Other encodings require 

reimplementation of commonly used genetic operators. In 
general, it is not easy to find suitable encoding that will 

allow the use of fully featured genetic algorithms for 

interleaver evolution or combinatorial optimization problems 

in general. For instance, the loss of crossover might be 

considered as significant weakening of the algorithm.   

Crossover operator is the main operator of the genetic 

algorithms distinguishing it from other population based 

stochastic search methods [5]. Its role in the GA process has 

been intensively investigated and its avoidance is expected to 

affect the efficiency of a GA solution negatively. Crossover 

operator is primarily a creative force in the evolutionary 
search process. It is supposed to propagate building blocks 

(low order, low defining-length schemata with above average 

fitness) from one generation to another and create new 

(higher order) building blocks by combining low order 

building blocks. It is intended to introduce to the population 

large changes with small disruption of building blocks [8]. In 

contrast, mutation is expected to insert new material to the 

population by random perturbation of chromosome structure. 

By this, however, can be new building blocks created or old 

disrupted [8]. 

 
III. PSO ALGORITHM 

Particle swarm optimization (PSO) is an evolutionary 

computation technique developed by Kennedy and Eberhart 

in 1995. PSO is similar to Genetic Algorithm (GA) in that 

the system is initialized with a population of random 

solutions. It is unlike a GA, however, in that each potential 

solution is also assigned a randomized velocity, and the 

potential solutions, called particles, are then “flown” through 

the problem space. Each particle keeps track of its 

coordinates in the problem space which are associated with 

the best solution (fitness) it has achieved so far. (This fitness 

value is also stored.) This value is called pbest. Another 
“best” value that is tracked by the global version of the 

particle swarm optimizer the overall best value, and its 

location, obtained so far by any particle in the population. 

This location is called gbest [11]. The particle swarm 

optimization concept consists of, at each time step, changing 

the velocity (accelerating) each particle toward its pbest and 

gbest locations (global version of PSO). Acceleration is 

weighted by a random numbers being generated for 
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acceleration toward pbest and gbest locations. This is also a 

local version of PSO in which, in addition to pbest, each 

particle keeps track of the best solution, called lbest, attained 

within a local topological neighbourhood of particles. The 
(original) process for implementing the global version of 

PSO is as follows: 

1 Initialize a population (array) of particles with random 

positions and velocities on d dimensions in the problem 

space. 

2 For each particle, evaluate the desired optimization fitness 

function in d variables. 

3 Compare particle’s fitness evaluation with particle’s pbest. 

If current value is better than pbest, then set pbest value equal 

to the current value and the pbest location equal to the current 

location in d-dimensional space. 

4 Compare fitness evaluations with the population’s overall 
previous best. If current value is better than gbest, then reset 

gbest to the current particle’s array index and value. 

5 Change the velocity and position of the particle according 

to equations (1) and (2), respectively: 

vid = vid + c1 * rand() * (pid - xid) + c2 * Rand() * (pgd - 

xid)                  (1) 

xid =  xid + vid     (2) 

6 Loop to step 2 until a criterion is met, usually a sufficiently 

good fitness or a maximum number of iterations 

(generations). 

Algorithm 2: A summary of particle swarm optimization. 
The algorithm is shown in the flow chart below in Fig.2. 

 
Fig.2: Flow chart of PSO 

Particles velocities on each dimension are clamped to a 

maximum velocity Vmax. If the sum of the accelerations 

would cause the velocity on that dimension to exceed Vmax, 

which is a parameter specified by the user, then the velocity 
on that dimension is limited on Vmax. Vmax is therefore an 

important parameter. It determines the resolution, or 

fineness, with which regions between the present position 

and the target (best so far) position are searched. If Vmax is 

too high, particles might fly past good solutions. If Vmax is 

too small, on the other hand, particles may not explore 

sufficiently beyond locally good regions. In fact, they could 

become trapped in local optima, unable to move far enough 

to reach a better position in the problem space [12]. The 

acceleration constants c1 and c2 in equation (1) represent the 

weighting of the stochastic acceleration terms that pull each 

particle toward pbest and gbest positions. Thus, adjustment 
of these constants changes the amount of “tension” in the 

system. Low values allow particles to roam far from target 

regions before being tugged back, while high values result in 

abrupt movement toward, or past, target regions. Early 

experience with particle swarm optimization (trial an error, 

mostly) led us to set the acceleration constants c1 and c2 

each equal to 2.0 for almost all applications. Vmax was thus 

the only parameter we routinely adjusted, and we often set it 

about 10-20% of the dynamic range of the variable on each 

dimension. Based, among other things, on findings from 

social simulations, it was decided to design a “local” version 
of the particle swarm. In this version, particles have 

information only of their own and their neighbour’s bests, 

rather than that of the entire group. Instead of moving toward 

a kind of stochastic average of pbest and gbest (The best 

location of the entire group), particles move toward points 

defined by the pbest and “lbest,” which is the index of the 

particle with the best evaluation in the particle’s 

neighbourhood. If the neighbourhood size is defined as two, 

for instance, particle (i) compares its fitness value with 

particle (i-1) and particle (i+1). Neighbours are defined as 

topological neighbours; neighbours and neighbourhoods do 
not change during run. For the neighbourhood version, the 

only change in process is defined in the six steps before is 

the substitution of pid, the location of neighbourhood best, 

for pgd, the global best, in equation (1). Early experience 

(again mainly trial and error) led to neighbourhood sizes of 

about 15 percent of the population size being used for many 

applications. So, for a population of 40 particles, a 

neighbourhood of six, or three topological neighbours on 

each side, was not unusual. The population size selected was 

problem-dependent. Population-sizes of 20-50 were probably 

most common. It was learned early on that smaller 

populations than were common for other evolutionary 
algorithms (such as genetic algorithms and evolutionary 

programming) were optimal for PSO in terms of minimizing 

the total number of evaluations. (Population size times the 

number of generations) needed to obtain a sufficient 

solution. 
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IV. TURBO CODE INTERLEAVER OPTIMIZATION 

EXPERIMENTS 

A set computational of experiments was conducted in order 

to evaluate genetic algorithms and particle swarm for turbo 
code interleaver optimization. The performance of turbo code 

interleaver optimized by genetic algorithms [10] and the 

performance of turbo code interleaver optimized by particle 

swarm were investigated. An experimental and simulation 

framework in MATLAB was used to evaluate the discussed 

interleaver optimization methods. 

 

A. Optimization by genetic algorithms 

The optimization based on genetic algorithms utilized the 

higher level chromosome genetic algorithm (HLCGA) [9]. 

The HLCGA is a recent GA based approach to combinatorial 

optimization problems. It enables the usage of any cross over 
operator in evolutionary search in given problem domain. In 

HLCGA, the population of candidate solutions is divided into 

several groups’ higher level chromosomes (HLCs) that act on 

the HLCGA level as traditional chromosomes and the 

underlying primitive chromosomes act as genes (i.e., the 

cross over and mutation is applied on HLCs and problem 

specific functions are used to transfer the effect of the 

operator on the primitive chromosomes assigned to the 

particular HLC). The fitness function used in this experiment 

was based either on the measurement of BER after simulated 

data transmission or on an analytical estimation of BER 
based on free distance. Its goal was to maximize dfree and 

minimize Nfree and wfree. The fitness function f was defined 

as follows: 

f   = A. dfree – B. Nfree – C. wfree                           (4) 

where the coefficients A, B and C were initially fixed to 100, 

10 and 1 respectively. We have genetically evolved 

interleavers for 64-bit to 1024-bit interleavers the settings for 

all optimization experiments were as follows: 

 HLCGA with elitary selection and study state 

migration 

 Below 100 generations 

 Probability of crossover 0.8 

 Probability of mutation 0.2 

 Population size is 40 

 Fitness criteria was minimal BER after simulated 

submission of 100 random frames of weight up to 6 

on the AWGN channel and dfree based fitness 

function as defined in (4) 

 The final evaluation of obtained interleaver was 

done over AWGN channel for 
𝐸𝑏

𝑁0
 ∈ [0,4] 

 

B. Optimization by particle swarm 

The experiments using particle swarm evolution focused on 

its comparison with GA, in the turbo code interleaver 

optimization area. The settings for PSO in this experiment 

were [14]: 

 Random selection of particles 

 Below 100 iterations  

 Population size is 40 

 c1 and c2 equal to 2.0 

 rand() and Rand() equal to 1.0 

 Fitness value can be find from the velocity and      

position equations (2), (3) 

The results of experimental interleaver optimizations are 
summarized in Table I, Table II and Table III. 

 

TABLE I: COMPARISON OF AVERAGE FREE 

DISTANCES OF A RANDOM INTERLEAVER, 

INTERLEAVER EVOLVED BY GA AND 

INTERLEAVER EVOLVED BY PSO 
N avg. random avg. GA avg. PSO 

64 13.50 15.70 17.20 

128 14.25 17.92 18.50 

256 15.75 20.20 19.10 

 

TABLE II: COMPARISON OF BEST FREE DISTANCES 

OF A RANDOM INTERLEAVER, INTERLEAVER 

EVOLVED BY GA AND INTERLEAVER EVOLVED BY 

PSO 
N max. random max. GA max. PSO 

64 13 17 17 

128 14 19 19 

256 17 21 20 

 

TABLE III: COMPARISON OF BER’S FOR GA AND PSO 

WITH RESPECT TO  
𝐸𝑏

𝑁0
  FOR 10 ITERATIONS 

𝐸𝑏

𝑁0
(𝑑𝐵) 

BER (GA) BER (PSO) 

1 0.220 0.180 

2 0.070 0.050 

3 0.040 0.030 

4 0.045 0.035 

5 0.035 0.030 

6 0.035 0.030 

7 0.035 0.030 

8 0.030 0.025 

9 0.030 0.025 

10 0.030 0.025 

The results of experimental interleaver optimizations are 

summarized in Table I, Table II and Table III. Table I 

outlines the average obtained interleaver free distance for 64-

, 128-, 256-bit interleavers. The second column shows 
average dfree of an interleaver optimized by random and 

third, fourth columns show average dfree of an interleaver 

optimized by GA and PSO respectively [13]. The 

experiments confirmed that all the two algorithms are 
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powerful interleaver optimizers. PSO evolution provided 

better average free distance for 64, 128 and 256-bit 

interleavers. Table II outlines the maximum obtained 

interleaver free distance for 64-, 128-, 256-bit interleavers. 
The second column shows maximum dfree of an interleaver 

optimized by random and third, fourth columns show 

maximum dfree of an interleaver optimized by GA and PSO 

respectively. The experiments confirmed that all the two 

algorithms are powerful interleaver optimizers. PSO 

evolution provided better maximum free distance for 64, 128 

and 256-bit interleavers. Table III outlines the efficient BER 

obtained for GA and PSO. The experiments confirmed that 

the efficient BER can be obtained by PSO rather than GA. 

 

V. RESULTS 

The experimental optimization results are summarized in 
Fig.3, Fig.4, Fig.5, Fig.6 and Fig.7 

 
Fig.3 interleaver size versus avg. dfree 

 

 
Fig.4 interleaver size versus max. dfree 

 

Fig.5: BER versus 
𝐸𝑏

𝑁0
 for 4 iterations 

 

Fig.6: BER versus 
𝐸𝑏

𝑁0
 for 5 iterations 

 

Fig.7: BER versus 
𝐸𝑏

𝑁0
 for 10 iterations 

 

VI. CONCLUSIONS 

The effective free distance to lower the error floor seems to 

be good criteria to improve. It was observed that higher the 

free distance, better the performance. This project discussed 

the solution to improve the free distance as the turbo code 

interleaver has to be optimized by using PSO and Genetic 

algorithms. Moreover, these algorithms are not limited by the 
size and higher interleaver sizes are already being tested. An 

analytical estimation of free distance was used as a basis of 

fitness function for GA and PSO. By comparing the 

performance in terms of free distance and Eb/N0 Vs BER, 

they illustrated that PSO performs well and also the number 

of iterations required for the convergence in PSO is less 

compared to GA. In our future work, we aim to investigate 

the performance of presented optimizers on more 

interleavers of different sizes to determine which algorithm 

performs better.  
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