
International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 1

INTERLEAVER OPTIMIZATION BY PARTICLE SWARM

ALGORITHM

K.Prabhakar1, Ch.Ravi Kumar2, Dr.K.Padmaraju3
1PG student, 2Asst. Prof, Department of E.C.E,

Sir C. R. Reddy College of Engineering, Eluru, India.
3Principal, JNTU Kakinada,

Kakinada, India.

Abstract: Turbo coding is an influential method of channel

coding in telecommunications. The introduction of the

turbo principle allowed close approach to the Shannon

limit, a theoretical boundary describing the maximum

capacity of a noisy communication channel. The invention

of the turbo codes and its superior performance in practical

applications also initiated a renaissance of channel coding

research. The exceptional performance of the turbo codes

can be further improved by finding right settings for a

particular system. Among others, the structure of the

interleaver performing a permutation of input bits is one

important property of any turbo code system. In this paper,

we present genetic algorithms and particle swarm algorithm

as two promising optimization methods to find a well

performing turbo code interleaver.

Index terms: dfree, BER, interleaver, GA and PSO.

I. INTRODUCTION

The turbo codes were introduced by Berrou, Glavieux and

Thitimajshima in 1993 [1] and they have become a hot topic

soon after their introduction. Prior to the turbo codes, 3dB or

more separated the spectral efficiency of real world channel

encoding systems from the theoretical maximum described
by Shannon theorem [1].Turbo coding brought to the world

of channel encoding one important principle: the feedback

concept, exploited heavily in electronics, to be utilized in

decoding of concatenated codes and it was indeed the

iterative decoding (the actual turbo principle) that helped the

turbo codes to achieve its impressive near-optimum

performance [1]. The performance of the turbo codes

depends on two principal parameters; the first is the code

spectrum and the second is the decorrelation between the

external information at the same number of iterations. The

optimization process can be used for of the matrix stature the
amelioration of performance and the dimilution with safe

performance. The latter is very interesting for multimedia

real-time satellite transmission systems because the

interleaving matrix causes a considerable dimilution of the

codec complexity and delay. The original turbo coder [1] [2]

was designed as a parallel concatenation of two circular

recursive systematic convolutional codes. The key

component that differentiates turbo codes from other

concatenated codes is the interleaver, which permutes the

input frame before it is processed by the second encoder. The

interleaver acts as a pseudorandom block scrambler defined

by a permutation with no repetitions [2]. One of the key
principles behind the performance of turbo coding is the fact

that each of the encoders typically produces a high-weight

code word for most inputs, but it produces a low-weight (i.e.

more error prone) code word for only few inputs. The

interleaver makes it more unlikely that both encoders will

output a bad code word for the same input, increasing the

probability that the decoder will be able to extract the correct

information. An interleaver is implemented by an interleaver

matrix. Interleaver of the dimension N performs a hardware

permutation of N input bits but it can be modelled as a

general permutation of N symbols. Interleaver sizes vary

from tens to tens of thousands. When searching for an
optimal interleaver, it is computationally infeasible to test all

possible interleaver matrices (N!) and all possible input

vectors (2N) to find a globally best interleaver. Therefore,

advanced interleaver optimization methods are sought. A

search for an permutation of N symbols is a typical

combinatorial optimization problem.

A. Interleaver evaluation

Turbo code performance can be evaluated by means of bit

error rate (BER), the ratio of incorrectly decoded bits to the

number of all bits of information transmitted during some

period. It is hard to compute the BER for a turbo code and
the simulations can be inaccurate for longer interleavers. If

simulations are performed, particular model of the noisy

communication channel must be used. The additive white

Gaussian noise (AWGN) channel is popular model for

telecommunication research. It is a good model for satellite

and deep space communication links [3].Rayleigh fading

channel is a reasonable model for tropospheric and

ionospheric signal propagation as well as the effect of

heavily built-up urban environments on radio signals [3]. An

alternative to simulations represents analytical estimation of

code error floor. The error floor of a C (n, k) code can be
analytically estimated.

 BER ≈
𝑤𝑓𝑟𝑒𝑒

2𝑘
 erfc (√dfree

𝑘

𝑛

𝐸𝑏

𝑁0
) (1)

where erfc is complementary error function. To estimate

BER, the following code properties must be known [4]:

 dfree - the free distance, i.e. the minimum number

of different bits in any pair of codewords

 Nfree-the free distance multiplicity, i.e. the number

of input frames generating codewords with dfree

 wfree - the information bit multiplicity, i.e., the
sum of the Hamming weights of the input frames

generating the codewords with dfree

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 2

There are several algorithms for free distance evaluation.

Garello et al. [4] presented an algorithm designed to

effectively compute free distances of large interleavers with

unconstrained input weight based on constrained subcodes.

II. GENETIC ALGORITHMS

Genetic algorithms (GA) are a well known population based

metaheuristic soft optimization method [5]. Gas solves

complex optimization problems by programmatic evolution

of an encoded population of candidate problem solutions.

The solutions are ranked using a problem specific fitness

function. The artificial evolution is implemented by iterative

application of genetic operators and leads to discovery of

above average solutions. The basic workflow of the standard

generational GA is shown in Algorithm 1.

1 Define objective (fitness) function and problem encoding;
2 Encode initial population P of possible solutions as fixed

length strings;

3 Evaluate chromosomes in initial population using objective

function;

4 while Termination criteria not satisfied do

5 Apply selection operator to select parent chromosomes

for reproduction:

 sel(Pi) parent1, sel(Pi) parent2;

6 Apply cross-over operator on parents with respect to cross

over probability to produce new chromosomes: cross (pC,

parent1, parent2) {of f spring1, of f spring2};
7 Apply mutation operator on off spring chromosomes

with respect to mutation probability: mut(pM, off spring1)

 off spring1, mut(pM, off spring2) off spring2;

8 Create new population from current population and

offspring chromosomes: migrate (offspring1, off

spring2,Pi) Pi+1;

9 end Algorithm 1: A summary of genetic algorithm

The algorithm is shown in the flow chart below in Fig.1.

Fig.1: Flow chart of GA

Problem encoding is an important part of genetic search. It

translates candidate solutions from the problem domain

(phenotype) to the encoded search space (genotype) of the
algorithm and defines the internal representation of the

problem instances used during the optimization process. The

representation specifies chromosomes data structure and the

decoding function [6]. The data structure defines the actual

search space, its size and shape. The choice of encoding also

affects the set and implementation of applicable evolutionary

operators. Encoding and evolutionary operators are closely

connected because the operators operate on the data structure

defined by the encoding [7]. Certain encodings, such as

direct encoding of permutation, disable the application of

crossover operator. Other encodings require

reimplementation of commonly used genetic operators. In
general, it is not easy to find suitable encoding that will

allow the use of fully featured genetic algorithms for

interleaver evolution or combinatorial optimization problems

in general. For instance, the loss of crossover might be

considered as significant weakening of the algorithm.

Crossover operator is the main operator of the genetic

algorithms distinguishing it from other population based

stochastic search methods [5]. Its role in the GA process has

been intensively investigated and its avoidance is expected to

affect the efficiency of a GA solution negatively. Crossover

operator is primarily a creative force in the evolutionary
search process. It is supposed to propagate building blocks

(low order, low defining-length schemata with above average

fitness) from one generation to another and create new

(higher order) building blocks by combining low order

building blocks. It is intended to introduce to the population

large changes with small disruption of building blocks [8]. In

contrast, mutation is expected to insert new material to the

population by random perturbation of chromosome structure.

By this, however, can be new building blocks created or old

disrupted [8].

III. PSO ALGORITHM

Particle swarm optimization (PSO) is an evolutionary

computation technique developed by Kennedy and Eberhart

in 1995. PSO is similar to Genetic Algorithm (GA) in that

the system is initialized with a population of random

solutions. It is unlike a GA, however, in that each potential

solution is also assigned a randomized velocity, and the

potential solutions, called particles, are then “flown” through

the problem space. Each particle keeps track of its

coordinates in the problem space which are associated with

the best solution (fitness) it has achieved so far. (This fitness

value is also stored.) This value is called pbest. Another
“best” value that is tracked by the global version of the

particle swarm optimizer the overall best value, and its

location, obtained so far by any particle in the population.

This location is called gbest [11]. The particle swarm

optimization concept consists of, at each time step, changing

the velocity (accelerating) each particle toward its pbest and

gbest locations (global version of PSO). Acceleration is

weighted by a random numbers being generated for

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 3

acceleration toward pbest and gbest locations. This is also a

local version of PSO in which, in addition to pbest, each

particle keeps track of the best solution, called lbest, attained

within a local topological neighbourhood of particles. The
(original) process for implementing the global version of

PSO is as follows:

1 Initialize a population (array) of particles with random

positions and velocities on d dimensions in the problem

space.

2 For each particle, evaluate the desired optimization fitness

function in d variables.

3 Compare particle’s fitness evaluation with particle’s pbest.

If current value is better than pbest, then set pbest value equal

to the current value and the pbest location equal to the current

location in d-dimensional space.

4 Compare fitness evaluations with the population’s overall
previous best. If current value is better than gbest, then reset

gbest to the current particle’s array index and value.

5 Change the velocity and position of the particle according

to equations (1) and (2), respectively:

vid = vid + c1 * rand() * (pid - xid) + c2 * Rand() * (pgd -

xid) (1)

xid = xid + vid (2)

6 Loop to step 2 until a criterion is met, usually a sufficiently

good fitness or a maximum number of iterations

(generations).

Algorithm 2: A summary of particle swarm optimization.
The algorithm is shown in the flow chart below in Fig.2.

Fig.2: Flow chart of PSO

Particles velocities on each dimension are clamped to a

maximum velocity Vmax. If the sum of the accelerations

would cause the velocity on that dimension to exceed Vmax,

which is a parameter specified by the user, then the velocity
on that dimension is limited on Vmax. Vmax is therefore an

important parameter. It determines the resolution, or

fineness, with which regions between the present position

and the target (best so far) position are searched. If Vmax is

too high, particles might fly past good solutions. If Vmax is

too small, on the other hand, particles may not explore

sufficiently beyond locally good regions. In fact, they could

become trapped in local optima, unable to move far enough

to reach a better position in the problem space [12]. The

acceleration constants c1 and c2 in equation (1) represent the

weighting of the stochastic acceleration terms that pull each

particle toward pbest and gbest positions. Thus, adjustment
of these constants changes the amount of “tension” in the

system. Low values allow particles to roam far from target

regions before being tugged back, while high values result in

abrupt movement toward, or past, target regions. Early

experience with particle swarm optimization (trial an error,

mostly) led us to set the acceleration constants c1 and c2

each equal to 2.0 for almost all applications. Vmax was thus

the only parameter we routinely adjusted, and we often set it

about 10-20% of the dynamic range of the variable on each

dimension. Based, among other things, on findings from

social simulations, it was decided to design a “local” version
of the particle swarm. In this version, particles have

information only of their own and their neighbour’s bests,

rather than that of the entire group. Instead of moving toward

a kind of stochastic average of pbest and gbest (The best

location of the entire group), particles move toward points

defined by the pbest and “lbest,” which is the index of the

particle with the best evaluation in the particle’s

neighbourhood. If the neighbourhood size is defined as two,

for instance, particle (i) compares its fitness value with

particle (i-1) and particle (i+1). Neighbours are defined as

topological neighbours; neighbours and neighbourhoods do
not change during run. For the neighbourhood version, the

only change in process is defined in the six steps before is

the substitution of pid, the location of neighbourhood best,

for pgd, the global best, in equation (1). Early experience

(again mainly trial and error) led to neighbourhood sizes of

about 15 percent of the population size being used for many

applications. So, for a population of 40 particles, a

neighbourhood of six, or three topological neighbours on

each side, was not unusual. The population size selected was

problem-dependent. Population-sizes of 20-50 were probably

most common. It was learned early on that smaller

populations than were common for other evolutionary
algorithms (such as genetic algorithms and evolutionary

programming) were optimal for PSO in terms of minimizing

the total number of evaluations. (Population size times the

number of generations) needed to obtain a sufficient

solution.

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 4

IV. TURBO CODE INTERLEAVER OPTIMIZATION

EXPERIMENTS

A set computational of experiments was conducted in order

to evaluate genetic algorithms and particle swarm for turbo
code interleaver optimization. The performance of turbo code

interleaver optimized by genetic algorithms [10] and the

performance of turbo code interleaver optimized by particle

swarm were investigated. An experimental and simulation

framework in MATLAB was used to evaluate the discussed

interleaver optimization methods.

A. Optimization by genetic algorithms

The optimization based on genetic algorithms utilized the

higher level chromosome genetic algorithm (HLCGA) [9].

The HLCGA is a recent GA based approach to combinatorial

optimization problems. It enables the usage of any cross over
operator in evolutionary search in given problem domain. In

HLCGA, the population of candidate solutions is divided into

several groups’ higher level chromosomes (HLCs) that act on

the HLCGA level as traditional chromosomes and the

underlying primitive chromosomes act as genes (i.e., the

cross over and mutation is applied on HLCs and problem

specific functions are used to transfer the effect of the

operator on the primitive chromosomes assigned to the

particular HLC). The fitness function used in this experiment

was based either on the measurement of BER after simulated

data transmission or on an analytical estimation of BER
based on free distance. Its goal was to maximize dfree and

minimize Nfree and wfree. The fitness function f was defined

as follows:

f = A. dfree – B. Nfree – C. wfree (4)

where the coefficients A, B and C were initially fixed to 100,

10 and 1 respectively. We have genetically evolved

interleavers for 64-bit to 1024-bit interleavers the settings for

all optimization experiments were as follows:

 HLCGA with elitary selection and study state

migration

 Below 100 generations

 Probability of crossover 0.8

 Probability of mutation 0.2

 Population size is 40

 Fitness criteria was minimal BER after simulated

submission of 100 random frames of weight up to 6

on the AWGN channel and dfree based fitness

function as defined in (4)

 The final evaluation of obtained interleaver was

done over AWGN channel for
𝐸𝑏

𝑁0
 ∈ [0,4]

B. Optimization by particle swarm

The experiments using particle swarm evolution focused on

its comparison with GA, in the turbo code interleaver

optimization area. The settings for PSO in this experiment

were [14]:

 Random selection of particles

 Below 100 iterations

 Population size is 40

 c1 and c2 equal to 2.0

 rand() and Rand() equal to 1.0

 Fitness value can be find from the velocity and

position equations (2), (3)

The results of experimental interleaver optimizations are
summarized in Table I, Table II and Table III.

TABLE I: COMPARISON OF AVERAGE FREE

DISTANCES OF A RANDOM INTERLEAVER,

INTERLEAVER EVOLVED BY GA AND

INTERLEAVER EVOLVED BY PSO
N avg. random avg. GA avg. PSO

64 13.50 15.70 17.20

128 14.25 17.92 18.50

256 15.75 20.20 19.10

TABLE II: COMPARISON OF BEST FREE DISTANCES

OF A RANDOM INTERLEAVER, INTERLEAVER

EVOLVED BY GA AND INTERLEAVER EVOLVED BY

PSO
N max. random max. GA max. PSO

64 13 17 17

128 14 19 19

256 17 21 20

TABLE III: COMPARISON OF BER’S FOR GA AND PSO

WITH RESPECT TO
𝐸𝑏

𝑁0
 FOR 10 ITERATIONS

𝐸𝑏

𝑁0
(𝑑𝐵)

BER (GA) BER (PSO)

1 0.220 0.180

2 0.070 0.050

3 0.040 0.030

4 0.045 0.035

5 0.035 0.030

6 0.035 0.030

7 0.035 0.030

8 0.030 0.025

9 0.030 0.025

10 0.030 0.025

The results of experimental interleaver optimizations are

summarized in Table I, Table II and Table III. Table I

outlines the average obtained interleaver free distance for 64-

, 128-, 256-bit interleavers. The second column shows
average dfree of an interleaver optimized by random and

third, fourth columns show average dfree of an interleaver

optimized by GA and PSO respectively [13]. The

experiments confirmed that all the two algorithms are

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 5

powerful interleaver optimizers. PSO evolution provided

better average free distance for 64, 128 and 256-bit

interleavers. Table II outlines the maximum obtained

interleaver free distance for 64-, 128-, 256-bit interleavers.
The second column shows maximum dfree of an interleaver

optimized by random and third, fourth columns show

maximum dfree of an interleaver optimized by GA and PSO

respectively. The experiments confirmed that all the two

algorithms are powerful interleaver optimizers. PSO

evolution provided better maximum free distance for 64, 128

and 256-bit interleavers. Table III outlines the efficient BER

obtained for GA and PSO. The experiments confirmed that

the efficient BER can be obtained by PSO rather than GA.

V. RESULTS

The experimental optimization results are summarized in
Fig.3, Fig.4, Fig.5, Fig.6 and Fig.7

Fig.3 interleaver size versus avg. dfree

Fig.4 interleaver size versus max. dfree

Fig.5: BER versus
𝐸𝑏

𝑁0
 for 4 iterations

Fig.6: BER versus
𝐸𝑏

𝑁0
 for 5 iterations

Fig.7: BER versus
𝐸𝑏

𝑁0
 for 10 iterations

VI. CONCLUSIONS

The effective free distance to lower the error floor seems to

be good criteria to improve. It was observed that higher the

free distance, better the performance. This project discussed

the solution to improve the free distance as the turbo code

interleaver has to be optimized by using PSO and Genetic

algorithms. Moreover, these algorithms are not limited by the
size and higher interleaver sizes are already being tested. An

analytical estimation of free distance was used as a basis of

fitness function for GA and PSO. By comparing the

performance in terms of free distance and Eb/N0 Vs BER,

they illustrated that PSO performs well and also the number

of iterations required for the convergence in PSO is less

compared to GA. In our future work, we aim to investigate

the performance of presented optimizers on more

interleavers of different sizes to determine which algorithm

performs better.

 REFERENCES
[1] C. Berrou, A. Glavieux, and P. Thitimajshima,

"Near Shannon limit error-correcting coding and

decoding: turbo codes," in Proc. Int. Conf. On

Commun, pp. 1064-1070, 1993.

[2] B.Vucetic and J.Yuan, “Turbo codes, Principles and

applications”, Kluwer Academic, Boston; London,

2000.

[3] J. G. Proakis, Digital Communications. New York:

Mc Graw-Hill, 4th ed., 2001.

International Journal For Technological Research In Engineering

Volume 2, Issue 1, September-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 6

[4] R.Garello, F.Chiaraluce, P.Pierleoni, M. Scaloni,

and S. Benedetto, "On error floor and free distance

of turbo codes," in IEEE International Conference

on Communications (ICC 2001), vol. 1, pp. 45-49,
2001. ISBN 0-7803-7097-1.

[5] M. Mitchell, An Introduction to Genetic Algorithms.

Cambridge, MA: MIT Press, 1996

[6] A. Czam, C. MacNish, K. Vijayan, and B. A.

Turlach, "Statistical exploratory analysis of genetic

algorithms: The influence of gray codes upon the

difficulty of a problem," in Australian Conference

on Artificial Intelligence (G. I. Webb 677 and X.

Yu, eds.), vol. 3339 of Lecture Notes in Computer

Science, pp. 1246-1252, Springer, 2004.

[7] R. K. Ursem, "Models for evolutionary algorithms

and their applications in system identification and
control optimization." University of Aarhus,

Denmark, April 2003.

[8] A. S. Wu, R. K. Lindsay, and R. Riolo, "Empirical

observations on the roles of crossover and

mutation," in Proc. of the Seventh Int. Conf. on

Genetic Algorithms (T. Back, ed.), (San Francisco,

CA), pp. 362-369, Morgan Kaufmann, 1997.

[9] P.Kromer, V.SmiSel, J.Platos, and D.Husek,

“Genetic Algorithms for the Linear Ordering

Problem,” Neural Network World, vol. 19, no. 1, pp.

65-80, 2009. ISSN 1210-0552, impact factor 0.395.
[10] N. Durand, J. Alliot, and B. Bartolome, "Turbo

codes optimization using genetic algorithms," in

Proceedings of the Congress on Evolutionary

Computation (P. J. Angeline, Z. Michalewicz, M.

Schoenauer, X. Yao, and A. Zalzala, eds.), vol. 2,

(Mayflower Hotel, Washington D.C., USA), pp.

816-822, IEEE Press, 6-9 1999.

[11] J. Kennedy and R. Eberhart (1995) “Particle Swarm

Optimization” Proceedings of the 1995 IEEE

International Conference on Neural Networks

(Perth, Australia): IEEE Service Center, Piscataway,
NJ, IV: pp 1942-1948.

[12] R. Eberhart and J. Kennedy (1995) “A New

Optimizer using Particle Swarm Theory”,

Proceedings of the Sixth International Symposium

on Micro Machine and Human Science (Nagoya,

Japan): IEEE Service Center, Piscataway, NJ: pp

39-43.

[13] J. Vesterstrøm and R. Thomsen (2004) “A

Comparative Study of Differential Evolution,

Particle Swarm Optimization, and Evolutionary

Algorithms on Numerical Benchmark Problems”,

Proceedings of the 2004 IEEE Congress on
Evolutionary Computation, Volume 2, pp. 1980 -

1987

[14] R. Eberhart and Y.Shi, 1998, “Comparison between

Genetic Algorithms and Particle Swarm

Optimization”, EP ’98: Proceedings of the 7th

International Conference on Evolutionary

Programming VII, pp. 611- 616.

