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ABSTRACT: Implementation of a new compiler usually 

requires making frequent adjustments to grammar 

definitions. An incremental technique for updating the 

parser tables after a minor change to the grammar could 

potentially save much computational effort. More 

importantly, debugging a grammar is made easier if the 

grammar is re-checked for correctness after each small 

change to the grammar. The basic design philosophy of an 

incremental parser generator, and incremental algorithms 

for LR(0), SLR(1) and LALR(1) parser generation are 

discussed in this paper. Some of these algorithms have been 

incorporated into an implementation of an incremental 

LALR(1) parser generator. 
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I. INTRODUCTION 

A compiler represents a major software development effort. 

Simple, non-optimizing compilers for relatively small 

languages like Pascal may consist of several thousand lines 

of source code. Production compilers for large languages like 

Ada or that performs sophisticated optimization may consist 

of hundreds of thousands of lines of code. A conventional 

compiler is normally organized into phases. A simple 

compiler would have phases for lexical analysis, syntactic 

analysis, semantic analysis and code generation. Many tools 

exist to help the compiler writer develop the lexical and 

semantic analysis phases. There are tools based on attribute 
grammar formalisms which can be used to construct semantic 

analysis and code generation phases. Automatic techniques 

for developing a code generator phase from a description of 

the target architecture for the compiler are a subject of 

current research. There are two main approaches to parsing 

top-down parsing and bottom-up parsing. Top-down parsing 

is usually implemented by a method known as recursive 

descent, which uses a collection of mutually recursive 

procedures. This method has been successfully used in many 

compilers (for example, in the original compiler for Pascal). 

But recursive descent is criticized for various reasons. Here 
are four. First, the class of grammars it can be used with is 

smaller than for bottom-up methods that accept LALR (1) 

and LR (1) grammars. Second, recursion is not always 

implemented efficiently and therefore parsing speed may be 

adversely affected. Third, good recovery from syntactic 

errors is not easy in a recursive descent compiler. Fourth, 

semantic analysis and code generation actions are often 

included inside the recursive descent procedures, and that 

tends to spoil the modularity of the compiler. Since we were 

forced to choose one approach or the other, we picked the  

 

bottom-up approach {mostly because it is capable of being 

used with a larger class of grammars. When using any 

existing tool for creating a syntactic analyzer, the user must 

create a grammar for the language to be compiled. The 

grammar is processed by the tool, which we will call a parser 

generator, and it outputs a parser suitable for inclusion in the 
compiler (or, equivalently, it outputs tables that drive a 

standard parsing procedure). The form of the grammar is 

constrained by the class of grammars that the parser 

generator can accept and by the need to associate semantic 

actions with the production rules. Parser generators exist for 

various classes of grammars, including: operator precedence, 

LL(1), SLR(1), LALR (1), and LR (1). The compiler writer 

can rarely use the grammar provided as part of the formal 

language description. Published grammars are usually 

designed for people to read and not for the implementer to 

use. The implementer is therefore likely to and that the 
grammar does not belong to the class of grammars accepted 

by the parser generator. Transformations on the grammar 

need to be performed, while being careful not to change the 

language that it accepts. Even after the grammar has been 

changed to satisfy the requirements of the parser generator, 

further changes are likely to be required when the 

implementer attempts to attach semantic actions to the 

production rules. The term grammar debugging is often 

applied to the activity of transforming a grammar in this 

way. 

 

II. DESIGNING AN INCREMENTAL PARSER 
GENERATOR 

There are two main design issues which must be decided 

before we can discuss the algorithms needed to implement an 

IPG. First, what quantum of change to the grammar should 

be input by the tool before the grammar is re-checked? At 

one extreme, we can recheck after the user adds or deletes 

single characters to or from the grammar specifications. At 

the other extreme, we can wait until the user has typed all the 

desired changes before re-checking. Second, what grammar 

class should the tool accept? By choosing a small class, such 

as the class of regular grammars, we would make the 
implementation of the tool easy but the tool would not be 

useful to compiler writers. By choosing a large class, such as 

LR (1), we might make the update algorithms too 

complicated to implement easily. Complicated update 

algorithms may also be too slow to be able to provide the 

user with sufficiently fast responses. We decided that the unit 

of change should be a single production rule. After each 

addition of a new rule and after each deletion of a rule, the 

grammar is re checked for acceptability. A change to a rule is 

considered as a deletion of the original rule followed by an 
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insertion of the corrected rule. If the unit of change were to 

be made any smaller, we would be faced with the problem of 

handling incomplete production rules. Larger units of change 

would simply delay reporting possible problems to the user. 
But, if we permit the user to add or delete rules in any order, 

we must be prepared to (temporarily) accept incomplete 

grammars. One symptom of an incomplete grammar is that 

some production rules and non-terminal symbols may be 

inaccessible. 

For example, if we have entered only the following two rules:   

S → begin statement list end 

assignment → variable := expression 

then the second rule cannot be used in any derivation that 

starts from (what is apparently) the goal symbol S. A second 

symptom may be that some non terminals cannot generate 

sentential forms that consist only of terminal symbols. Such 
non-terminals are called useless. For example, we might add 

just the rule: statement list → statement list ; statement to the 

grammar, above. Then, even if we temporarily consider 

statement to be a terminal symbol, the grammar is incapable 

of deriving sentential forms that are free from the non-

terminal symbol statement list. If we wish to allow rules to be 

entered in any order and to check the grammar after each 

addition, it is clear that a relaxed form of checking must be 

employed. Ignoring the rules for inaccessible or useless non-

terminals would be an unsatisfactory approach. The user 

could choose to enter rules in such an order that almost the 
entire grammar may remain inaccessible or useless until the 

last rule is defined. Current generators for bottom-up parsers 

usually accept one of the LR grammar classes. Wechose to 

implement the LALR(1) class of grammars because of its 

power {it contains the LL(1),LR(0) and SLR(1) classes. 

While it is a smaller class than the LR(1) class, the generated 

parserusually has far fewer states and therefore requires 

much less memory for its implementation. Italso appears to 

be the case that LR(1) parsing tables require much more 

work to update after asmall change to the grammar. 

Conversely, parsers for the LR(0) and SLR(1) classes of 
grammars require less computational effort to create than 

does LALR(1). A parser generator for either of4these smaller 

grammar classes may be more suitable in situations where the 

computational costis important. 

 

III. HANDLING INCOMPLETE GRAMMARS 

It should be possible to analyze grammars which have not 

been completely specified. Indeed, the start symbol of the 

grammar may be one aspect of the grammar that remains 

undefined until late in the specification process. It is 

therefore appropriate to add a goal symbol of our own, ^ S, 

and to invent extra rules of the form 
S→ $NN $N 

for each non-terminal symbol N in the partial grammar. The 

$N symbol is a delimiter symbol of type N. It is an invented 

symbol that represents both a beginning of input and an end 

of input delimiter. Its purpose is to provide a unique context 

within which N can appear if it were to be used as a goal 

symbol. If unique delimiter symbols are not provided, our 

support for multiple goal symbols can cause LR conflicts in 

the parser construction process. But addition of these extra 

rules requires us to know which symbols are non-terminals. 

A reasonable strategy would be to assume that every symbol 

encountered in the grammar so far is a terminal symbol, 
unless the symbol appears on the left-hand side of a rule.  

While a grammar is under development, it is natural for 

some parts of the grammar to be incomplete [4]. Therefore, 

we should not complain about useless productions until the 

user claims to have completed the grammar. For example, 

the user may have entered the rule 

L →L , x 

and no others with L as a left-hand side. It is clear that L is a 

non-terminal symbol, but it is also useless. We can 

circumvent this difficulty by assuming that while the 

grammar is in an incomplete state, it is a grammar for 

sentential forms {not a grammar for sentences in the 
language. For example, with the rule for L, above, the 

language includes the sentential forms 

$L L $L $L L, x $L $L L, x, x $L : : : etc.  

where $L is the automatically generated context delimiter 

symbol. If the user makes an explicit request to check the 

grammar for completeness or requests that the LALR (1) 

parse tables be output, an algorithm to check the grammar 

can be applied. A suitable algorithm is given in [4]. When 

rules are missing from a grammar, it is impossible to know 

for certain which symbols is null (can produce the empty 

sentence in some derivation sequence). A symbol X may 
appear to be non-nullable, but the addition of the rule 5 X ! _ 

would immediately change the status of X. It seems best to 

assume that symbols are non-nullable until a derivation to 

the empty string becomes possible using rules in the 

grammar. This would also avoid generation of premature 

error messages about ambiguities in the grammar. 

 

IV. INCREMENTAL LR PARSER CONSTRUCTION 

ALGORITHMS 

When the grammar class is restricted to one of the LR (0), 

SLR (1) or LALR(1) classes, the computation of parsing 
actions for a particular grammar can be separated into two 

stages. The first stage is the construction of the LR (0) sets of 

items for the grammar. The second stage computes the look-

ahead sets that are associated with the LR (0) items. 

Computing these look-ahead sets is trivial for a LR(0) parser 

generator and is the most expensive for  

LALR (1). 

 

A. Terminology 

A context-free grammar G is defined as a four-tuple G = < 

VT; VN; S; P >,  

where VT is the set of terminal symbols, VN is the set of 
non-terminal symbols, S is a designated start symbol, and P 

isthe set of production rules. As explained above, the 

grammar that our algorithms process is not the same 

grammar as is entered by the user. It has been augmented by 

additional productions and additional symbols. We will use 

the name G to refer to this augmented grammar. We will use 

standard conventions when discussing grammar formalisms. 

The symbol _ represents an empty string of grammar 
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symbols. If R is a relation, then R_ represents the reflexive, 

transitive closure of R. 

 

B. Incremental Update of the LR (0) Sets of Items 
Construction of the LR (0) sets of items is covered in texts on 

compiler construction [2, 3, 8, 20]. A reader who is 

unfamiliar with the methods and concepts of LR (0) parser 

construction will and the formal definitions and notation 

difficult to read. We therefore begin with an informal 

introduction. 

4.3.1 Informal Introduction to LR (0) Concepts 

The LR(0) construction method is based on the concept of an 

item. An item is simply a production rule with a marker 

(frequently called a dot) inserted anywhere in the right-hand 

side of the rule. The marker indicates how many symbols of 

the right-hand side have been recognized at some point in a 
parse. That is, all symbols to the left of the marker have been 

recognized and symbols to its right have not yet been used. 

An LR parser is implemented as a finite state automaton, 

where each of its states corresponds to some set of items. 

Each such set of items represents parsing possibilities 

{showing which rules are eligible to be matched if 

appropriate symbols are read by the parser. The sets of items 

which give rise to the LR recognizer are constructed by a 

process of closure. There are some initial items, formed by 

inserting the marker at the beginnings of the right and sides 

of all goal rules in the grammar. There are two closure 
operations which we will call Item Closure and State 

Closure. Given a set of items, the Item Closure operation 

adds extra items to the set; these extra items are usually 

called completion items. If any item in the set has the marker 

immediately to the left of a non-terminal symbol N, then this 

item generates completion items. These completion items are 

formed by taking each rule which has N on its left-hand side 

and placing the marker at the beginning of the right-hand 

side. These completion items may, themselves, require the 

addition of more completion items {which is why a closure 

process is required. The Kernel operation is applied to a 
grammar symbol and a set of items that has been completed 

(using Item Closure), to yield a new set of items. This new 

set of items plus completion items added by the Item Closure 

operation corresponds to the next state in the LR recognizer 

as reached by a transition on the grammar symbol. The items 

for a new state before Item Closure is applied are called the 

kernel items of the new states [7]. The LR(0) collection of 

sets of items is formed by a process of applying Item Closure 

to the initial items, and applying State Closure to this set to 

yield the remaining sets of items. State Closure can be 

implemented using an iterative algorithm based on a work 

list. The algorithm is sketched out below. In this algorithm, 
Start is the set of items for the start state of the recognizer; 

W is the work list. On termination, K is a set that contains all 

the recognizer's states. 

State Closure: 

Start:= f \the initial items" g; 

W:= f Start g; 

K:= f g; 

while W is not empty doremove state S from W; 

S:= Item  Closure(S); 

K: = K [f S g; 

for each grammar symbol X do compute the kernel items, S0 

= Kernel(S,X);if S0 is a new state then 
W:= W[ f S0g; 

Since states are uniquely determined by their sets of kernel 

items, the test to see if G is a new state does not require that 

the Item Closure function be applied to G. The operation of 

Item Closure can also be implemented by an iterative 

algorithm based on a work list. In this case, the work list 

holds individual items. The algorithm has a similar structure 

to the one given above and therefore we omit giving its 

details. Construction of the LR recognizer will generate three 

sets of items (amongst about 20 other sets)that are related as 

shown in Figure 1. But after we add the extra rule A→ B, the 

corresponding states in the new LR automaton have sets of 
items as shown in  

Figure 2. 

States 3 and 4 in the first LR recognizer have split to become 

pairs of states in the second recognizer. Unfortunately, there 

does not appear to be a simple test for determining when 

such state splitting is required {or, indeed, for determining 

what extra elements must be added to aset of items. 

 

C. SLR (1) Look ahead Sets 

The SLR (1) method uses a slightly more sophisticated 

definition for the look-ahead sets. The sets are computed 
using a function called FOLLOW. But computation of 

FOLLOW is facilitated if the set of all null able symbols, 

NULL, and a function called START are also computed. 

The set of null able symbols is formally dened as 

 

NULL = f X j X) g 

Using NULL, we can determine the null ability of any 

sentential form. 

The set of nullable symbols after a rule addition is closely 

related to that set beforehand. 

Continuing with the convention that primes refer to the 
grammar G0, the relationship is: 

NULL0 = (NULL [fBjB ) 

Lg if 8 i (1 _ i _ n) :Ri 2 NULL 

NULL otherwise where the rule L!R1 : : :Rn is added to the 

grammar G to create G0. A simple iterative algorithm based 

on a work list of non-terminal symbols that need to be re-

checked for null ability can be used to obtain NULL0 from 

NULL efficiently. 

The START function yields the set of starter symbols for a 

grammar symbol. It is formally defined as 

 

START(X) = f Y j X _) Y _ g 
The FOLLOW function yields the set of symbols that may 

legally follow a grammar symbol in a sentential form. It is 

defined as 

 

FOLLOW(X) = f Y j S _XY _ g 

Methods for computing the START and FOLLOW functions 

can be found in most bookson compiler construction. The 

approach given here is based on [10]. The START function 
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can be found by constructing the Immediate Starters relation 

for the grammar and then forming the transitive closure of 

that relation. If we choose to represent that relation by a 

matrix IS, where IS[X; Y] = true means that symbol X has Y 
as one of its immediate starters, and then the matrix is 

defined as follows. An entry IS[X; Y] has the value true i_ 

the grammar contains a rule 

X!Z1Z2 : : :ZkY _ such that 8i (1 _ i _ k) : Zi 2 NULL. All 

other entries have the value false. 

The transitive closure of IS is written as IS_ and is defined by 

IS_[X;Z] = IS[X;Z] or ( 9Y1; Y2; :::Yn : IS[X; Y1]&IS[Y1; 

Y2]&:::&IS[Yn; Z] ) 

There are well-known algorithms for computing the transitive 

closure of a relation [1, 22]. Efficient incremental algorithms 

for transitive closure also exist [23] and would be particularly 

suitable for use here. If we form the transitive closure IS_ 
using any of the standard methods, we have 

START(X) = f Y j IS_[X; Y ] = true and Y 2 VT g 

Similarly, the FOLLOW function can be computed by first 

constructing an Immediate Followers relation and then taking 

its transitive closure. We define the IF matrix so that IF[X; 

Y] has the value true if either the grammar contains a rule 

Z!_Y Z1Z2 : : :ZkW_ and 8i (1 _ i _k) : Zi 2 NULL and X 2 

START(W), or  the grammar contains a rule X!_Y Z1Z2 : : 

:Zk and 8i (1 _ i _ k) : Zi 2 NULL. 

The transitive closure of IF can be computed, again using 

standard techniques. We can then obtain FOLLOW from IF_ 
as follows. 

FOLLOW(X) = f Y j IF_[X; Y] = true and Y 2 VT g 

The formulation of START and FOLLOW in terms of IS_ 

and IF_ demonstrates the monotonic nature of the problem. 

When a new rule L→R1R2 : : :Rn is added to the grammar, 

we must change entries from false to true in the IS and IF 

matrices. Changes in the reverse direction cannot occur. For 

example, if n > 0, the entry IS[L;R1] would be set to true. In 

turn, this implies changing entries from false to true in 

transitive closure, IS_, and thus we would have computed 

START0. Having computed START0, we can update IF. For 
example, when we add the rule 

L→ R1R2 : : :Rn 

and where n > 1, the entries IF[R1; x] for x 2 START0(R2) 

would be set to true. 

An algorithm which works well is to update IS and IF as 

suggested, and then use an iterative, worklist-based, approach 

for updating the transitive closures. 

Once we have computed the IF_ relation (and thus the 

FOLLOW function), we can determine the look ahead sets. 

According to the SLR (1) approach, we use: 

LA (q; [A!_ _ ]) = FOLLOW(A) 

And, if we define LA for non-reduce items in the same way 
as for LR(0) parsers, conflict checkingcan also be performed 

in the same way. 

 

D. LALR (1) Lookahead Sets 

Several methods for computing LALR (1) look ahead sets 

have been published. Of these, an iterative algorithm due to 

Aho and Ull man, described in [3, algorithm 4.13] and [8, 

figure 6.25], appears to be best suited for conversion to use in 

an incremental setting. We give a modified version of this 

algorithm below. If the existence of some item, I1, in some 

state implies the existence of another item, I2, either in the 

same state (through the addition of completion items) or in 
some other state (through the state completion process), then 

the look ahead function applied to I2 yields a set which may 

contain symbols determined by I1. This is called 

spontaneous generation of look ahead symbols. In addition, it 

is possible that the set of look ahead symbols for I2 must 

include the entire set of look ahead symbols for I1. In this 

case, the symbols are said to propagate from I1 to I2. The 

rules for spontaneous generation of symbols and propagation 

of symbols in the two possible settings are as follows: 

 

Case 1: 

Completion Items 
Suppose that state q contains an item I1 where the marker 

appears to the left of a non-terminal symbol. That is, I1 has 

the form [A!_ _ X_]. The state must also contain one or more 

completion items with the form [X! _ ]. Let I2 be one such 

item. The symbols which can follow the right hand-side of I2 

must include the symbols which follow X in item I1, and the 

symbols which can follow X in that item must include 

FIRST (_), where FIRST is defined below. In other words, a 

2 FIRST (_) implies a 2 LA(q; I2). Inthe terminology of [3], 

the symbol is spontaneously generated (by I1) and must 

appearin the lookahead set of I2 [14]. 
 

Case 2: 

Kernel Items 

Suppose that state q1 contains an item I1 with the form [A!_ 

_ X_]. There must necessarily be another state q2 reached by 

a transition on symbol X from q1, where q2 contains a kernel 

item with the form [A!_X]. In such a case, if a 2 LA(q1; I1) 

then a 2 LA(q2; I2). This is another example of propagation, 

where symbol ‘a’ propagates from I1 to I2. 

The FIRST function is a simple extension of START to the 

domain of sentential forms. 
FIRST(_) = f x j x_; x 2 VT g 

An alternative de_nition which shows how to derive FIRST 

from START is 

FIRST(X1 : : :Xk) = ( START(X1) [ FIRST(X2 : : :Xk) if 

X1 2 NULL 

START(X1) otherwise FIRST(_) = ; 

A simple algorithm to determine the look ahead sets can start 

by initializing all look ahead sets to empty. Then it can make 

repeated passes over all items in all states adding 

spontaneously generated symbols and propagated symbols to 

the sets. This iterative procedure can halt when a pass fails to 

add any new symbols to any set. (A faster version, and the 
method used in ilalr, would use a work list so that only items 

whose look ahead sets have changed participate in the next 

pass. Entries in the work list consist of < state; item > pairs.) 

 

V. WORST CASE COMPLEXITY 

A natural question to ask is how long can it take to update 

the parser tables after the addition or deletion of one 

production rule using the algorithms described in this 
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paper?" We will demonstrate that the problem has 

exponential worst-case time complexity and therefore no 

algorithm that is efficient in the worst-case can exist. The 

demonstration is based on the following grammar1 which 
contains 2n + 2 productions. 

S0 → a S0 j b S0 

S0 → c S1 

S1 → a S2 j b S2 

S2 → a S3 j b S3 

S3 → a S4 j b S4 

: : : 

Sn → a Sn j b Sn 

Sn → d 

The LR(0) construction algorithm applied to this grammar 

generates a recognizer with 4n + 6states. 

Suppose, now, that the production rule S0 → a S1is added to 
the grammar. The extra rule causes the number of states in 

the LR(0) recognizer to be increased to 2n + 4n + 6 states. 

Therefore, the unfortunate implication is that any algorithm 

for incrementally updating the LR parse tables must be 

prepared to create an exponential number of states when 

processing a single rule addition. Therefore both the time and 

space cost are exponential in the size of the grammar. (The 

amended grammar also illustrates that even a non-

incremental LR (0) parser generator has exponential worst-

case time and space complexity.) The example grammar is 

constructed in such a way that it illustrates another interesting 
property. Suppose that we add yet one more production 

S0 → b S1 

Surprisingly, this addition causes the number of states in the 

LR(0) recognizer to be reduced to6n +7. Now, consider what 

happens if this last rule is deleted. We would observe the 

number of LR (0) states to increase from 6n+7 to 2n+4n+6. 

In other words, this example demonstrates that an 

incremental algorithm for rule deletion must also have 

exponential time and space complexity. 

The grammar was constructed by Alan Demers. 

[18]. 
GRAMMAR 

PL/0 Pascal XPL C Oberon Ada 

Total CPU time 0.3 2.0 2.7 10.9 2.1 23.6 

Average time per rule 0.005 0.009 0.02 0.04 0.008 0.05 

Maximum time for one rule 0.02 0.05 0.16 3.72 0.04 0.8 

Total CPU time used by yacc 0.3 1.2 1.0 3.8 1.4 11.5 

 

VI. CONCLUSION 

Practical algorithms for incremental analysis of grammars 

and for incremental generation of LR(0), SLR(1) and 

LALR(1) recognizers have been presented. Compiler 

construction tools based on these algorithms would help 
compiler writers develop suitable grammars and might also 

permit the incremental construction of compilers. Although 

the worst-case execution times of the algorithms are poor, 

practical experience shows that they work well. A possibility 

that might reduce expected execution time requirements even 

further would be to incorporate an efficient incremental 

transitive closure algorithm [23]. There is, of course, no hope 

for such an algorithm improving the worst-case time 

complexity of the problem. The transitive closure algorithms 

are efficient only for the case when a single edge is added or 

deleted from a graph. As section 6 in this paper 

demonstrates, the number of edges that must be added or 
deleted from the state graph of the LR(0) recognizer can be 

exponential in the size of the grammar. It would be nice to 

give a proper comparison between the speeds of our 

implementation and Fischer's implementation [9], but only a 

meaningless comparison seems possible. Using our 

implementation, the time needed to process the 109 

productions of the XPL grammar is 2.7 CPU seconds on a 

SUN SparcStation I workstation, for an average of 0.024 

CPU seconds per production. Fischer's implementation 

applied to the same grammar used an average of 1.8 CPU 

seconds per production on a Siemens 7.748 computer (which 

he describes as being nearly half as fast as an IBM 370/158). 
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