
International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 106

AMOEBA

Sanjana Singh
1
, Surbhi Bhardwaj

2
, Vinay Mathur

3

Dronacharya College of Engineering, Gurgaon, Khentawas, Farrukh Nagar

I. INTRODUCTION

Amoeba is a complete distributed operating system design

which includes all the basic facilities that one would expect

from a conventional operating system. In other words

Amoeba is an Operating System that performs all the

standard functions of any OS, but it performs them with a

collection of machines. In this operating system users

effectively log into the system as a whole, and not to a

specific machine. One of the main goals of the Amoeba
development team was to design a transparent distributed

system that allows users to log into the system as a whole. Its

design and implementation started in 1981 and is developing

at the VrijeUniversiteit in Amsterdam but previously it was

developed by Centrum voorWiskunde, also in Amsterdam.

The main components for the architecture of amoeba are the

processor pool, workstations (SUN-3s and VAX stations are

supported), X-terminals, servers and gateways. The

assumptions being made for the architecture of amoeba was

that the memory and processors are sufficiently cheap that

each user will be allocated multiple processors, and each
processor will have plenty of memory to run applications,

without the need for backing store. The amoeba distributed

operating system was built up on the popular paradigm or

assumption of client processes communicating with services

via message transition. Amoeba uses capabilities to access

services and the objects these services implement. The

amoeba’s capabilities is a 256 bit reference to an object. The

first 64 bits are known as the port. Refer to the service

managing the object. The next 64 bits are available to the

system for use as a location hint. The rest 128 bits are

allocated by the services to identify the objects. A
capabilities is generated in such a way and contains sufficient

bits that the probability of an unauthorized user guessing an

objects capabilities in negligible. Its function is process

management and inter-process communication. There is thus

also a minimum amount of state that has to migrate when a

cluster migrates. The researchers believe that this was one of

the essential choices that made this mechanisms work.

Things would have been much more difficult if we had to

deal with things like 'open file state,' 'controlling terminals' or

the complicated connection state of a sliding-window

protocol. The Amoeba inter-process communication

mechanism has also been vital to the success of our design.
Firstly the communicating entities are named using

aoccasion-independent naming mechanism that uses an

underlying locate service to find out dynamically where the

packets have to be sent. None of the migration apparatus has

to worry about rerouting messages, no forwarding addresses

have to be left behind and the hosts can forget about the

existence of a cluster immediately after migration is

complete. Then comes the simplicity of the Amoeba

protocols contribute enormously to the portability of clusters.

The protocol has only a few states in which it can stay for

arbitrary lengths of time and it is relatively easy to migrate a

cluster in these states using the "I'm frozen, don't bother me"

messages described earlier. When the protocol is in any of

the other states, the Amoeba Kernel can wait until the

protocol. The most important conclusion that the researchers

have drawn from this design—1.which is trdll being

implemented and 2. is that it is possible to build a simple
mechanism that is sufficient to realize downloading,

migration, exception handling, check-point hag, emulation

and debugging. Although the implementation is not complete

at the time of writing this paper, we expect to finish soon

enough to present performance information at the SOSP

conference. reaches a 'migratable' one.

II. FEATURES

 The Amoeba architecture is designed as a collection

of micro-kernels.

 An Amoeba system consists of four principle
components: user workstations, pool processors,

specialized servers, and gateways.

 Amoeba is built upon a microkernel architecture.

 The microkernel supports the basic process,

communications, and object primitives. It also

handles device I/O and memory management.

 Each machine in the Amoeba system runs a small

identical software program - called the

microkernel.

 The function of the kernel is to allow efficient

communication between client processes, which run
application programs, and server processes, such as

the Bullet File server or the directory server.

 Amoeba implements a standard distributed client /

server model, where user processes and applications

(the clients) communicate with servers that perform

the kernel operations.

 Threads

 Each process has its own address space and contains

multiple threads.

 These threads have their own stack and program

counter, but share the global data and code of the
process.

 Remote Procedure Calls

 RPC is the basic communication mechanism in

Amoeba. Communication consists of a client thread

sending a message to a server thread, then blocking

until the server thread sends back a return message,

at which time the client is unblocked.

 Amoeba uses stubs to access remote services which

http://fsd-amoeba.sourceforge.net/amoeba.html

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 107

hide the details of the remote services from the user.

A special language in Amoeba called the Amoeba

Interface Language (AIL) generates these stubs

automatically. The stubs will then marshal
parameters and hide the communication details from

the user.

 Group Communication: Amoeba provides a

mechanism that allows all receivers in a one-to-

many configuration to receive a transmitted message

in the same order. This simplifies parallel

processing and distributed programming problems.

III. HISTORY

Amoeba is a complete distributed operating system design,

including all the basic facilities that one would expect from a
conventional operating system. It is currentlybeing developed

at the VrijeUniversiteit in Amsterdam, where its design and

implementation were begun in 1981, and it was previously

developed jointly with the Centrum voorWiskunde, also in

Amsterdam. The Amoeba system model is an example of the

processor pool model. The main components makingup the

architecture are the processor pool,X-terminals, workstations

(SUN-3s and VAXstations are supported), servers and

gateways. The gateways arebasically used for connecting

Amoeba sites over WANs. The assumptions behind this

architecture are that memory and processors are sufficiently

cheap that each user will be allocated multiple processors,
and each processor will have plenty of memory to run

applications, without the need for backing store. Rather than

allocating a multiprocessor to each user, processing power is

largely concentrated in the processor pool, where it can be

shared more flexibly among users and more economically

housed and interconnected. First proto was release in 1983

(V1.0), last official release 1996 (V5.3). The current

computer environment started arriving in the early 1980s. It

was at this time that technology allowed computers to

become smaller and cheaper, allowing for each individual to

have their own personal computer. These personal
computers began replacing the bulky computers that

employees would have to share its use time with one another.

These personal computers then started being networked

together, allowing communication and sharing of resources.

In fact this time period is where the basis of the current

networking was born, and out of this period came a need for

multiple computers to be connected together but act as one.

This concept of multiple computers acting as one is known as

parallelism and one of the things Amoeba was designed to

handle. Amoeba was first developed in the early 1980s at the

VrijeUniversiteit in Amsterdam, Netherland, under the

guidance of Andrew Tanenbaum and with the cooperation of
Centrum voorWiskundeenInformatica. The purpose of

Amoeba was to create a simplistic way to handle the needs of

distributed systems and parallels while maintaining the

transparency for its users. The transparency that is being

maintained is that the user has no clue how the underlying

system works, where the files are stored or on which machine

the process is running. Traditional distribution systems have

workstations that users can log into, and while on these

workstations they can tell that the process they run, only run

on the local machine and other calls must occur for the

process to run on a different machine. In this, users can tell

that there are different machines. With Amoeba the user
doesn’t know where the process is running, where files are

stored or even if certain files are stored in the same physical

memory. The last official release of Amoeba came in 1996

with version 5.3. It came 13 years after the prototype was

released in 1983. This doesn’t mean that others have not

done their own work; just that Tanenbaum and

VrijeUniversiteit have not done work. One example of this

is Fireball Amoeba by Fireball Software Distribution.

IV. ARCHITECTURE

Amoeba is designed as a collection of micro kernels. Thus

the Amoeba system consists of many CPU's connected over
a network. Each CPU owns his own local Memory in the

range from 2MB to several 100MB. A huge number of

Processor's build the so called Processorpool. This group of

CPUs can be dynamically allocated as needed by the system

and the users. Specialized servers, called Run server,

distribute processes in a fair manner to these machines.

Many different Processor architectures are supported:

i80386(Pentium), 68k, SPARC. Today, only the i80386

architecute is significant for building an Amoeba system

(cheap!!!). Workstations allow the users to gain access to

the Amoeba system. There is typically one workstation per
user, and the workstation are mostly diskless; only a

workstation kernel must be booted (from floppy, via tftp,

burned in Flash-EEPROM). Amoeba supports X-Windows

and UNIX-emulation. At heart of the Amoeba system are

several specialized servers that carry out and synchronize the

fundamental operations of the kernel. Amoeba has a

directory server (called SOAP) that is the naming service for

all objects used in the system. SOAP provides a way to

assign ASCII names to an object so it's easier to

manipulate(by humans). The directory server can replicate

files without fearing their change. Amoeba has of course a
file server (called the Bullet Server) that implements a stable

high speed file service. High speed is achieved by using a

large buffer cache. Since the files are first created in cache,

and are only written to disk when they are closed, all the files

can be stored contiguously. The underlying idea behind

immutable files is to prevent the replication mechanism from

undergoing race conditions. And file server crashes normally

don't result in an inconsistent file system! The Bullet server

uses the virtual disk server to perform I/O to disk, so it's

possible that the file server run as a normal user program!

The Boot server controll all global system servers (outside

the kernel): start, check and poll, restart if crashed. All
Amoeba objects (files, programs, memory segments, servers)

are protected anddiscribed with so called Capabilities. In

Other words, Amoeba implements a universell distributed

Client-Server-Modell. In fact, basically the whole system

needs only three Functions to do all the work: The

transaction call from the Client, and the GetRequest and

PutReply functions on the Server side.

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 108

An Amoeba System consists of four principle components:

 Workstations

 Pool Processors

 Specialized Servers (File server...)

 Gateways

Objects

 Abstract data types with data and behaviors.

 Amoeba primarily supports software objects, but

hardware objects also exist.

 Each object is managed by a server process to which
RPCs can be sent. Each RPC specifies the object to

be used, the operation to be performed, and any

parameters to be passed.

Capabilities

 128-bit value object description created and returned

to the caller when the object is created.

 Capabilities are encrypted to prevent tampering.

 Subsequent operations on the object require the user

to send its capability to the server to both specify the

object and prove the user has permission to

manipulate the object.

V. GOLES OF AMOEBA

Amoeba was designed with four main goals:

 Distribution – Connecting together many machines

 Parallelism – Allowing individual jobs to use

multiple CPUs easily

 Transparency – Having the collection of computer

act like a single system

 Performance – Achieving all of the above in an

efficient manner

 Distribution: Connecting together many machines so

that multiple independent users can work on

different projects. The machines need not be of the

same type, and may be spread around a building on

a LAN.

 Parallelism: Allowing individual jobs to use

multiple CPUs easily. For example, a branch and
bound problem, such as the TSP, would be able to

use tens or hundreds of CPUs. Or, one user playing

chess where the CPUs evaluate different parts of

the game tree.

 Transparency: Having the collection of computers

act like a single system. So, the user should not log

into a specific machine, but into the system as a

whole.

 Performance: Achieving all of the above in an
efficient manner. The basic communication

mechanism should be optimized to allow messages

to be sent and received with a minimum of delay.

Also, large blocks of data should be moved from

machine to machine at high bandwidth.

REFERENCES

[1] http://fsd-amoeba.sourceforge.net/amoeba.html

[2] http://fsd-amoeba.sourceforge.net/

[3] http://www.cdk5.net/oss/Ed2/Amoeba.pdf

[4] [Tanenbaum 1990] Tanenbaum, A.S., Renesse, R.
van, Staveren, H. van., Sharp, G.J., Mullender, S.J.,

Jansen, A.J., and Rossum, G. van: "Experiences

with the Amoeba Distributed Operating System,"

Commun. ACM, vol. 33, pp. 46-63, Dec. 1990

[5] Ramsay, M., Keigel, T., Memmer, H. ―Ameoba

Distributed Operating System‖ Online

http://csserver.evansville.edu/~mr56/CS470/Final_

Draft.pdf

[6] https://www.google.co.in/url?sa=t&rct=j&q=&esrc

=s&source=web&cd=5&cad=rja&uact=8&ved=0C

DsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu

%2F~mzhang%2FCPSC450_550%2FCase%2520St
udy%2F2007%2FJamesSchultz_CaseStudy.doc&ei

=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9L

V0vyeCPDPVp-r53E1jnBpAoHg

[7] https://www.google.co.in/url?sa=t&rct=j&q=&esrc

=s&source=web&cd=6&cad=rja&uact=8&ved=0C

EEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F

~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8Q

Xa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8nd

E-4e_Zko9iQ

[8] http://oai.cwi.nl/oai/asset/18386/18386A.pdf

[9] https://www.google.co.in/url?sa=t&rct=j&q=&esrc
=s&source=web&cd=17&cad=rja&uact=8&ved=0

CEIQFjAGOAo&url=http%3A%2F%2Fwww.ics.u

ci.edu%2F~cs237%2Flectures%2Fold%2Famoeba-

peter.ppt&ei=tBUYVKbeCoyk8AWgr4HgAQ&usg

=AFQjCNFKsgVPqloIo8T66fWOibMi2qyWbw

http://fsd-amoeba.sourceforge.net/amoeba.html
http://fsd-amoeba.sourceforge.net/
http://www.cdk5.net/oss/Ed2/Amoeba.pdf
http://csserver.evansville.edu/~mr56/CS470/Final_Draft.pdf
http://csserver.evansville.edu/~mr56/CS470/Final_Draft.pdf
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CDsQFjAE&url=http%3A%2F%2Fwww.pcs.cnu.edu%2F~mzhang%2FCPSC450_550%2FCase%2520Study%2F2007%2FJamesSchultz_CaseStudy.doc&ei=6hIYVMXPLtP68QXW34FY&usg=AFQjCNE9LV0vyeCPDPVp-r53E1jnBpAoHg
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8QXa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8ndE-4e_Zko9iQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8QXa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8ndE-4e_Zko9iQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8QXa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8ndE-4e_Zko9iQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8QXa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8ndE-4e_Zko9iQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8QXa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8ndE-4e_Zko9iQ
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CEEQFjAF&url=http%3A%2F%2Fweb.iiit.ac.in%2F~kalyan_s%2Famoeba.ppt&ei=JBIYVNjVE8X_8QXa04LACQ&usg=AFQjCNHQSDcI9_MHf_LT8ndE-4e_Zko9iQ
http://oai.cwi.nl/oai/asset/18386/18386A.pdf

