
International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 139

REVIEW AND ANALYSIS OF VARIOUS EFFICIENT FREQUENT

PATTERN ALGORITHMS

Ms. Mansi Trivedi

PG Scholar, Department of Computer Science

Kalol Institute of Technology and Research Centre, Kalol, Gujarat, India

Abstract: Frequent pattern mining is the widely researched

field in data mining because of its importance in many real

life applications. Many algorithms are used to mine

frequent patterns which give different performance on

different datasets. Apriori, Eclat and FP Growth are the

initial basic algorithm used for frequent pattern mining.

CATS Tree extends the idea of FP-Tree to improve storage

compression and allow frequent pattern mining without

generation of candidate item sets. It allows mining only

through a single pass over the database. The efficiency of

Apriori, FP-Growth, and CATS Tree for incremental

mining is very poor. The implemented CATSIM Tree uses

more memory compared to Apriori, FP-Growth and CATS

Tree, but with advancement in technology, is not a major

concern. In this work CATSIM Tree with modifications in

CATS Tree is implemented to support incremental mining

with better results.

Keywords: Frequent itemset: Pattern discovery: Tree

structure.

I. INTRODUCTION

 Data mining has long been an active area of research in
databases. A database is a systematically arranged collection

of data, so that it can be retrieved and manipulated easily at a

later time. There are different kinds of database, like active

database, cloud database, embedded database and

transactional database etc, but in this paper the researcher

deals with transactional database only. A transactional

database is a database in which there is no auto commit. Most

modern relational database are the transactional database [3].

A database layout tells how data is represented. There are

two layouts which are in common use, horizontal layout and

the vertical layout. It is a divide and conquers mechanism
which reduces the size of database recursively by considering

only the longest pattern. A frequent pattern is a pattern which

occurs in comparatively more transactions. A frequent item

set is an item set whose support is greater than some user-

specified minimum support. The presented paper is organized

in five sections: the first section contains the introduction; the

second section presents a brief description of the three

frequent pattern mining algorithms namely Apriori, Eclat, FP

Growth, CATS, CATS-FELINE, FPM and CATS SIM tree.

The third section gives the methodology used. The fourth

section presents a comparative analysis of the algorithms

used under varying conditions. Fifth section gives the
conclusion and in the last references is listed.

II. FREQUENT PATTERN MINING ALGORITHMS

Now the researcher elaborates the various frequent itemset

mining algorithms.

A. Apriori Algorithm

Apriori is the very first algorithm for mining frequent

patterns. It was given by R Agarwal and R Srikant in 1994

[5].It works on horizontal layout based database. It is based

on Boolean association rules which uses generate and test
approach. It uses BFS (breadth first search). Apriori uses

frequent k itemsets to find a bigger itemset of k+1 item. The

calculation of frequency of an item is done by counting it‟s

occurrence in all transactions [6]. All infrequent items are

dropped. Apriori property: All subsets of a frequent itemsets

which are non empty are also frequent. Apriori follows two

steps approach: In the first step it joins two itemsets which

contain k-1 common items in kth pass. The first pass starts

from from the single item; the resulting set is called the

candidate set Ck. In the second step the algorithm counts

the occurrence of each candidate set and prune all

infrequent itemsets. The algorithm ends when no further
extension found.

B. Eclat Algorithm

Eclat is a vertical database layout algorithm used for mining

frequent itemsets. It is based on depth first search algorithm.

In the first step the data is represented in a bit matrix form.

If the item is bought in a particular transaction the bit is set

to one else to zero. After that a prefix tree needs to be

constructed. To find the first item for the prefix tree the

algorithm uses the intersection of the first row with all other

rows, and to create the second child the intersection of the
second row is taken with the rows following it [4]. In the

similar way all other items are found and the prefix tree

get constructed. Infrequent rows are discarded from further

calculations. To mine frequent itemsets the depth first search

algorithm is applied to prefix tree with backtracking.

Frequent patterns are stored in a bit matrix structure. Eclat is

memory efficient because it uses prefix tree. The algorithm

has good scalability due to the compact representation.

C. FP Growth Algorithm

Frequent pattern growth also labelled as FP growth is a

tree based algorithm to mine frequent patterns in database
the idea was given by (han et. al. 2000) [10]. It is applicable

to projected type database. It uses divide and conquer

method [7]. In it no candidate frequent itemset is needed

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 140

rather frequent patterns are mined from FP tree. In the first

step a list of frequent itemset is generated and sorted in their

decreasing support order. This list is represented by a

structure called node. Each node in the FP tree, other than
the root node, will contain the item name, support count,

and a pointer to link to a node in the tree that has the same

item name [6]. These nodes are used to create the FP tree.

Common prefixes can be shared during FP tree construction.

The paths from root to leaf nodes are arranged in non

increasing order of their support. Once the FP tree is

constructed then frequent patterns are extracted from the FP

tree starting from the leaf nodes. Each prefix path subtree is

processed recursively to mine frequent itemsets. FP Growth

takes least memory because of projected layout and is storage

efficient. A variant of FP tree is conditional FP tree that

would be built if we consider transactions containing a
particular itemset and then removing that itemset from

all transactions. Another variant is parallel FP growth (PFP)

that is proposed to parallelize the FP tree on distributed

machines [8]. FP Growth is improved using prefix-tree-

structure, Grahne and Zhu [9].

D. CATS Tree

In the present study, we have developed a novel data

structure, CATS Tree, an extension of FP-Tree [3].

Researchers have proposed to use tree structure in data

mining [3]. However, they are not suitable for interactive
frequent pattern mining. CATS Tree is a prefix tree and it

contains all elements of FP-Tree including the header, the

item links etc. Paths from the root to the leaves in CATS Tree

represent sets of transactions. We use the database in Table 1

to illustrate the construction of a CATS Tree. Initially, the

CATS Tree is empty. Transaction 1 is added as it is.

Transaction 2 is added, common items, F, A, C, is extracted

from Transaction 2 and is merged with the existing tree.

Although item D is not contained in Transaction 2, common

items could be found underneath node D. Item M is found to

be common. However, Transaction 2 cannot be merged
directly at node M because it would violate the structure of

CATS tree that the frequency of a parent node must be

greater than the sum of its children‟s frequencies. Node M of

CATS Tree is swapped in front of node D and it is merged

with the transaction. After that, there is no more common

item. The remaining portion of Transaction 2 is added to

node M.

Table 1: Transaction Data [13].

TID Original Transaction

1 A, F, C, D, G, I, B, P

2 A, B, C, F, L, M, O

3 B, A, H, J, O

4 B, C, K, S, P

5 A, F, C, E, L, P, M, N

Transaction 3 is added. Item F of Transaction 3 is merged.

Since the frequency of node A is the same as that of node F,

The search for other possible merge nodes continues along

the branch. It passes through node A, C, and M and finally,

reaches node B. Even though Transaction 3 also contains an
item B, but the frequency of node B is smaller than that of

node M, the remaining of the transaction is inserted as a new

branch at node F. When Transaction 4 is added, there is no

common item. Transaction 4 is added as it is. In Figure 2,

Transaction 5 is added; F, A, C, and M are merged. The
search for common items continues along the path. Item P is

common in both the tree path and Transaction 5. This

triggers swapping of node P to the front of node D. After

item P is merged, there is no more common item. The

remainders of Transaction 5 are inserted as a new branch at

node P. Finally we get answer in figure 1.

All CATS Trees have the following properties:

1) The compactness of CATS Tree measures how many

transactions are sharing a node. Compactness decreases as it

is getting away from the root. This is the result of branches

being arranged in descending order.
2) No item of the same kind could appear on the lower right

hand side of another item. If there were items of the same

kind on the right hand side, they should have been merged

with the node on the left to increase compression. Any items

on the lower right hand side can be switched to the same

level as the item, split nodes as required if switching nodes

violates the structure of CATS Tree [14].

E. CATS-FELINE and FPM

In the mining process with a CATS-tree, the CATS-FELINE

algorithm builds a conditional condensed CATS-tree for
each frequent item p by gathering all transactions that

contain p. A conditional condensed CATS-tree is one in

which all infrequent items are removed and is different

from a conditional FP-tree. In order to ensure that all

frequent patterns are captured by CATS-FELINE, it has

to traverse both up and down the CATS-tree.

CATS-FELINE the overall mining process proceeds in three

phases:

Step 1: Convert the CATS tree generated from a database

scan into a condensed tree with nodes having the
frequency count less than the minimum support removed.

Step 2: Construct conditional condensed CATS-trees (also

known as alpha-trees) for items in the header table with

frequency counts greater than the minimum support.

Step 3: For each alpha-tree generated in step 2, item sets with

at least minimum support are mined [13].

FPM algorithm differs from CATS-FELINE in step 2.

Instead of recursively constructing alpha trees for each

frequent item set, FPM generates a single conditional

condensed tree for each item using a pre-order traversal

of the original CATS-tree. To illustrate the basic idea

behind the algorithm, we will use the database shown in
Table 1 as an example and the original CATS-tree

constructed from a database scan and its condensed one

will look like the following (assuming minimum support of

3) [3]: table 1. This condensed tree, a header table containing

all the frequency counts for each item, and the required

minimum support will be the actual input to our algorithm

called FPM (Frequent Patterns Merge). Given the above

condensed tree, FPM starts building an alpha tree for each

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 141

frequent item as follows: Since C is an item with the highest

frequency in the header table, FPM constructs an alpha tree

for c first. By traversing the leftmost path of the tree of

Figure 1 in pre order, it will construct a partial tree Figure 2
consisting of a single path C-F-A-M. Note that the order of

nodes and the frequency count of some node have been

slightly changed from Figure 1 to Figure 2. The node for

item c has been moved to the root. Because it is the

current alpha item under consideration and the frequency of

node F has been changed to 3 from 4 because the branch F-B

in Figure 1 does not contain item C and thus the frequency of

F has been decremented by 1.

Figure 1: CATS-Tree and its condensed one [13]

After C-F-A-M has been added to the current alpha-tree, the

node for „P: 2‟ will be encountered in the preorder traversal.

In this case, P is not frequent and there is no node for P in the

current alpha tree. Then, a node is created for „P: 2‟ and will

be inserted to the current alpha tree as a child of the root.

This is the major difference between the CATS-FELINE and

FPM. FPM attempts to reduce the number of nodes in

the alpha tree by condensing even infrequent items. The

same process applies to node „B: 1‟ and Figure 3 shows the
resulting alpha tree after the left subtree of the original

condensed tree has been traversed.

Figure 2: Initial Round of Constructing Alpha Tree for c [13]

Figure 3: next round of constructing alpha tree for c [13]

Now, the right sub tree of the input tree is to be traversed. It

has one node for C and thus the root count of the current

alpha tree should be incremented by 1, making it 4. And also

the counts of node B and P should also be incremented by 1

respectively. Figure 4 shows the final alpha tree constructed

for item C:

F. CATSIM Tree
In the CATS Tree, all the items are stored as they are

appearing in the sequence of particular transaction. The

sequence may be changed if any of the lower leaf appears

more time than the upper leaf. The procedure is continuous

up to the last transaction of the database. So, in CATS Tree

we cannot predict which item will remain on top of the tree

up to

Figure 4: Final Round of Constructing Alpha Tree for c [13]

The last transaction. While in the CATSIM Tree all the items

are stored either in the alphabetical or any other order as

related with items. CATSIM Tree satisfies the following

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 142

properties.

1. Items ordering is unaffected by the changes in frequency

caused by incremental updates.

2. Node frequency in the CATSIM tree is at least as high as
the sum of frequencies of its children [12].

Figure 5: CATSIM Tree construction [12]

III. COMPARATIVE ANALYSIS

Figure 6, shows the comparison for the six algorithms for

incremental database. The Apriori algorithm requires the

maximum execution time. The FP-Growth requires less time

compare to Apriori. CATS FELINE is better than CATS and

FPM is also better than CATS FELINE. So for incremental

size of the database, CATSIM Tree is better than any of the

existing algorithms.

Figure 6: Incremental size of Database vs. Runtime [12]

Experiment for the incremental size of database and memory

usage is shown in figure 7. The Apriori, FP-Growth, and

CATS are working on the principle of regeneration of the
tree, so these three algorithms use the same memory that had

been used previously to construct the tree. While in the case

of CATSIM Tree, it requires more memory in the normal

static database conditions, so also in the incremental size of

the database it requires more memory.

Figure 7: Incremental size of Database Vs Memory

Usage [12]

IV. CONCLUSION

Frequent pattern mining is the most important step in

association rules which finally helps us in many applications.

In this paper the researcher surveyed the pattern mining

algorithms. Apriori algorithm uses join and prune method,

and major weakness algorithm is producing large number
of candidate itemsets and large number of database

scans which is equal to maximum length of frequent itemset

[5]. A true reason of Apriori failure is it lacks efficient

processing method on database and expensive [7]. FP

Growth is the best among the three algorithms and is thus

most scalable. Eclat performs poorer than FP Growth and the

Apriori performs the worst. CATS Tree algorithms allows

single pass frequent pattern mining. But it require more

memory so to overcome this problem CATS-FELINE is

introduce and then FPM. But the tree size can be exponential

International Journal For Technological Research In Engineering

Volume 2, Issue 2, October-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 143

for the case of dense data, so there is a need in the

improvement in the tree structure which reduces the tree size

and make it scalable to handle large database which is highly

incremental in nature So, attempt may be made to use
concept of CATSIM for heterogeneous databases. In the

future improvements must be taken care to enhance the

performance of Algorithms for better layout to store the data.

 REFERENCES

[1] C.K.-S. Leung,Q. Khan and T. oque, “Cantree: A

tree structure for efficient incremental mining of

frequent patterns”, Proc. 5th IEEE International

Conference on Data Mining, (2005), pp.274–281,

Los Alamitos, CA.

[2] W. Cheung and O. R. Zaiane, “Incremental mining

of frequent patterns without candidate generation or
support constraint,” in Proc. IEEE Int.Conf.

Database Eng. Appl., Los Alamitos, CA, 2003, pp.

111–116.

[3] S. Patel and S. Garg, “Basic Frame work of

CATSIM Tree for efficient frequent pattern mining”

(In Communication with “Infocomp journal of

Computing “, Bazil).

[4] C.Borgelt. “Efficient Implementations of Apriori

and Eclat”. In Proc. 1st IEEE ICDM Workshop on

FrequentItem Set Mining Implementations, CEUR

Workshop Proceedings 90, Aachen, Germany 2003.
[5] Goswami D.N et. al. “An Algorithm for Frequent

Pattern Mining Based On Apriori” (IJCSE)

International Journal on Computer Science and

Engineering Vol. 02, No. 04, 2010, pp. 942-947.

[6] Rahul Mishra et. al. “Comparative Analysis of

Apriori Algorithm and Frequent Pattern

Algorithm for Frequent Pattern Mining in Web

Log Data.” IJCSIT Vol. 3 (4) , 2012, Pp. 4662 –

4665.

[7] SathishKumar et al. “Efficient Tree Based

Distributed Data Mining Algorithms for mining
Frequent Patterns” International Journal of

Computer Applications (0975– 8887) Volume 10

No.1, November 2010.

[8] Antonie, M.-L. and Zaïane, O. R., “Text Document

Categorization by Term Association”, IEEE ICDM

2002, pp 19-26, Maebashi City, Japan, December 9-

12, 2002.

[9] Cheung, W., "Frequent Pattern Mining without

Candidate generation or Support Constraint."

Master's Thesis, University of Alberta, 2002.

[10] Muthaimenul Adnan and Reda Alhajj, “A Bounded

and Adaptive Memory-Based Approach to Mine
Frequent Patterns From Very Large Databases”

IEEE Transactions on Systems Management and

Cybernetics Vol.41,No. 1,February 2011.

[11] M.El-Hajj and O.R. Zaiane, “COFI approach for

mining frequent itemsets revisited,” In Proc. ACM

SIGMOD Worksjop Res. Issues Data Mining

knowl. Discovery, New York, 2004, pp. 70-75.

[12] Ketan Modi and B.L.Pal , “Frequent Pattern Mining

using CATSIM Tree”, International Journal on

Computer Science and Engineering (IJCSE), Vol. 4

No. 09 Sep 2012.

[13] Byung Joon Park, “Efficient Tree-based Discovery
of Frequent Itemsets”, International Journal of

Multimedia and Ubiquitous Engineering Vol. 7, No.

2, April, 2012.

[14] Hitul Patel, Vinit Kumar, Puspak Raval, “Survey:

Efficent tree based structure for mining frequent

pattern from transactional databases”, IOSR Journal

of Computer Engineering (IOSR-JCE),Volume 9,

Issue 5 (Mar. - Apr. 2013), PP 75-81.

