
International Journal For Technological Research In Engineering

Volume 2, Issue 3, November-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 181

USAGE & IMPLEMENTATION IN REMOTE METHOD

ALLOCATION

Himanshu Sethi
1
, Harshit Punn

2

Dronacharya College of Engineering of Engineering

Maharishi Dayanand University, Gurgaon, Haryana, India

Abstract: Java Remote Method Invocation (RMI) allows the

programmer to execute remote methods using the same

semantics as local Functions calls. RMI is the Java version

is Remote Procedure Call (RPC). RMI internal

implementation is outside the scope of the client and only

make exposed interface with the remote server object. The

purpose of RMI is to allow programmers to rely on remote

services from distant objects. The paper explains the

architectural layers RMI and its mechanisms. Paper deals

with the performance of all layers of RMI and how they are

implemented. This paper has considered an example to

explain the proper performance of RMI.

Index Terms: Marshaling, Naming, RMI Registry, Object

Serialization Stub & Skeleton.

I. INTODUCTION

The Java RMI is Java’s native theme for making and using

remote objects over network. It allows us to distribute java

object instances across network on completely different

machines, which can be invoked from native machine. To act

with the ways of objects on remote machines using JVM
(Java Virtual Machine), RMI is employed. This process

permits the exchange of data/statistics victimization multiple

JVMs. It provides the placement transparency by making the

ways being accessed domestically. RMI is that the Java

version of Remote Procedure decision (RPC), but has the

flexibility to pass quite one remote object along with the

request. This object being passed has the ability to vary the

service that's performed on the remote pc. This property of

java is named “Moving Behavior” by Sun Microsystems. For

example, once a user at a foreign laptop fills out associate

degree expense account, the Java program interacting with

the user could communicate, using RMI, with a Java program
in another laptop that forever had the most recent policy

concerning expense coverage. In reply, that program would

challenge an object associate degreed associated

methodology info that will modify the remote laptop program

to screen the user's travel and entertainment account

information during a means that was in line with the most

recent policy. The user and also the company each would

save time by catching mistakes early. Whenever the

corporate policy modified, it'd need a change to a program in

exactly one laptop. Object parameter-passing mechanism is

thought as object serialization. Associate RMI request may
be a request to invoke the method of a distant object. The

request is of identical syntax as letter of invitation to invoke

associate object technique within the same computer. In

general, RMI is intended to preserve the object model and its

blessings across a network.

II. REMOTE METHOD INVOCATION

The Remote technique Invocation (RMI) model represents

an Evaluation distributed object application. It permits an

object within a JVM, acting as a shopper, to invoke a method

on an object running in a foreign JVM, actions as a server,

and come the results to the shopper. Therefore, RMI implies
a shopper and a server. RMI uses a stratified architecture;

every of the layers may be enhanced or replaced while not

poignant the remainder of the model. For example, a UDP/IP

layer might replace the transport layer while not poignant the

higher layers. RMI design explains the communication

between two Java Virtual Machines, wherever the strategies

are invoked from native machine. The RMI implementation

consists of essentially three abstraction layers. the primary is

that the Stub and Skeleton layer, which lies in a lower place

the read of the developer. This layer intercepts technique

calls created by the shopper in the interface reference
variable and redirects these calls to a foreign RMI service.

Remote Reference Layer comprehends a way to infer and

manage references made up of shoppers to the remote

service objects. In JDK 1.1, this layer provides a unicast

affiliation from clients to remote service objects that area

unit running and export them onto a server. The transport

layer is predicated on TCP/IP connections between machines

in an exceedingly network. Java RMI provides the

subsequent elements:

 Remote object implementations.

 User interfaces, or stubs, to remote objects.

 A written record for remote object for locating
objects over the network.

 A network protocol for communication between

remote objects and their user that is Java Remote

method protocol.

A. LAYERS OF RMI

Figure 1: RMI Architecture

International Journal For Technological Research In Engineering

Volume 2, Issue 3, November-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 182

The Stub Layer (& Skeletons):

A stub may be a program on the client facet of the

client/server relationship. The stub layer resides between the

application layer and also the remainder of the RMI system
and acts as an interface. Stub is the agreeable substitute

protest that delivers the interface on client viewpoint to

address the server perspective. It is produced by a JDK took,

rmic, from the server item ordered code, and is conveyed to

the client. The network-related code dwells within the stub

and skeleton, so that the client and the server won't need to

subsume the network and sockets in their code. A skeleton

may be a remote object at the server-side. This stub consists

of strategies that invoke dispatch calls to the remote

implementation of objects.

The Remote Reference Layer:
The second layer of RMI design deals with the interpretation

of references made of client remote objects to server remote

objects. This layer deals the lower level transport interfaces.

With the assistance of Remote Object Activation it activates

the latent remote object for unicast communication.

The Transport Layer:

The third layer of RMI design provides the affiliation

between two JVMs. The transport layer sets up the

connections to remote address areas, manages them, monitors

the affiliation liveliness, and listens the incoming calls. For
incoming calls, the transport layer establishes a connection. It

locates the target, dispatches the remote calls and passes the

affiliation to the dispatcher.

B. RMI MECHANISM

 The client Program utilizes the stub for making a

demand for a remote item. The server program gets

this appeal from the skeleton.

 RMI invocation is initiated by career a technique on

stub object, that maintains an inside reference to the

remote object it represents.

 The stub forwards the strategy invocation request

through Remote Reference Layer with the assistance

of marshaling method. This layer forwards the

request to an acceptable remote object.

 Marshaling: This method transforms the native

Objects of an acceptable moveable type, in order

that they will be Easily broadcasted to a remote

method.

 Each Array, string or user-defined object is checked

While being marshaled to conclude whether or not it

Implements Java RMI. Remote interface. If it is a
Remote object, then that reference is employed for

Marshaling.

 If it's a Serializable object, then initial it's serialized

into bytes that square measure sent to the remote

object and then they're reassembled to make a copy

of local object. If in case the object is neither then it

throws a Java. Rmi. Marshal Exception to the client.

 The remote reference layer then receives the

marshaled arguments from the stub, which then

converts the client request into single network level

requests.

 The remote reference layer at the server aspect

receives transport-level request and transforms it
into a request for skeleton to match the documented

object.

 The skeleton converts the remote request into

suitable methodology decision and carries out the

method of un-marshaling the theistic arguments

applicable for servers. The arguments sent as

remote objects are converted into native stubs and

those sent as serialized objects are converted into

native copies of originals.

 In case a return quality is made then the article is

marshaled by the skeleton and sent fresh to the
client through server remote reference layer.

 The final result is transmitted again to client

through a suitable transport convention.

C. STEPS TO CREATE RMI-BASED CLIENTS AND

SERVER

Creation of RMI-based Server:

Make the remote interface and the servant segment class. To

have these servant classes make the RMI Server. Compile

the class records and create the Skeletons and IDL Record.

Start up the Server.

Creation of RMI-based Client:

Make the Client class. Empower the Stub Generation and

compile the Client. Verify the Server is running and at that

point startup the Client process.

III. RMI REGISTRY

The server application makes an object and makes it

available remotely. For making the object remotely, the

server needs to register the RMI-empowered questions that

are accessible to the customers. The clients will realize these

Remote Services on a naming service that is procurable on
publicly outlined port. RMI defines its own naming service,

the RMI registry, possesses a standard port of 1099. a regular

JDK tool, rmi registry, handles the registry. In the event that

an item executes the Java. rmi. remote interface, then it is

limited to registry setting. The interface that is, no doubt

referenced is executed by every registry context.

A. METHODS FOR REGISTERING REMORE OBJECT

The method for remote articles are summoned by actualizing
the Java. rmi. remote interface. Emulating are the method for

enrolling the remote articles:

 bind(): It binds the determined name of the remote

object. The parameter of this system ought to be in

a URL form.

 unbind(): Demolishes the binding for a particular

name of a remote method in the registry.

 rebind(): It again binds the pointed out name to the

remote object. The current binding will be

supplanted by rebinding.

 list(): It returns the names that were certain to the

International Journal For Technological Research In Engineering

Volume 2, Issue 3, November-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 183

registry in associate array kind. These names are

within the form of a URL-formatted string.

 lookup(): A stub, a reference comes back to the

remote object that is expounded with a such name.

IV. IMPLEMENTING AN RMI SYSTEM

The steps concerned in building a distributed application with

RMI include:

 Interface explanation for the remote methods.

 Stub files

 A server to host the remote services

 An RMI Naming service A client program that

requires the remote services

A. DEFINE AN INTERFACE FOR DECLARING REMOTE

METHODES

It includes actualizing a remote interface for between the

client and the server. It characterizes the remote protests that

are asked for by the client. We are making a simple

application to add two numbers. So we pronounce the add()

method in interface Addition.java.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface Addition extends Remote{

public long add(long x, long y) throws RemoteException;
}

The interface is augmented with the goal that it can be called

remotely in the middle of the client and server. The Remote

Exception happens when there is some failure in RMI

process.

B. DEFINE THE CLASS AND IMPLEMENT REMOTE

METHODES

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class AdditionImpl extends Unicast Remote Object

implements Addition
{protected AdditionImpl() throws Remote Exception

{super();}
public long add(long x,long y)throws Remote Exception

{return x+y; }}
We characterize a class Additionimpl.java and actualize the

interface and characterize the body of the remote method.

The Unicast remote object is a base class for user-defined

remote objects having the general structure as, Public class

Unicastremoteobject develops Remote server.

C. DEFINING THE SERVER PROGRAM

The primary Parameter is a URL to a registry that contains

the name of the application, which here is "Addition service".

The second parameter is an item name that is gotten to

remotely in the middle of client and server. The rebind is a

strategy of Naming class which is actualized in java.rmi.*

package. 1099 is the default RMI port and 127.0.0.1 is a

localhost-ip address

import java.rmi.Naming; public class AdditionServer
{
AdditionServer()
{
Try
{
Addition c= new AdditionImpl();

Naming.rebind("rmi://127.0.0.1:1099/AdditionService",c);
}
catch(Exception e){ e.printStackTrace();
}
}
public static void main(String[] args)
{
new AdditionServer();
}
}
To get to the remote object on client side, which is as of now
binding at a server side by, reference URL, we utilize the

lookup method, which has the same reference URL. This

lookup is a technique for Naming class which is accessible in

Java.rmi package. The name of the URL must be same as

indicated on server side class.

import java.rmi.Naming; public class AdditionClient
{
public static void main(String[] args)
{
try
{
Addition c= (Addition)Naming.lookup

("//127.0.0.1:1099/AdditionService");

System.out.println("Addition of two digits is:

"+c.add(10,15));
}
catch(Exception e)
{
System.out.println(e);
}}}
Compile all the source java files.

 javac Addition.java

 javac AdditionImpl.java

 javac AdditionClient.java

 javac AdditionServer.java

 The command rmic empowers the stub generation.

Syntax: rmic AdditionImpl This command produces

AdditionImpl_Stub.class file.

 Start the RMI remote Registry: The references of

the remote objects are registered to RMI Registry.

Syntax: rmiregistry & (which opens

rmiregistry.exe)

 Run the server program and afterward run the client

program on another terminal window.

International Journal For Technological Research In Engineering

Volume 2, Issue 3, November-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 184

V. CONCLUSION
Actualizes remote connection between them. The servers' job

is to acknowledge demand from a client, perform services,

and after that send the results to the client. The utilization of
Registry and Naming classes is to bootstrap our distributed

applications.

RMI implementation includes four product programs to be

specific:
 Client program: does the request

 Server program: implements the request

 Stub Interface: Executed by client to know the

remote functions

 Skeleton Interface: Executed by server.

Advantages of RMI:

 It’s simple and clean to actualize and produces more

robust and flexible applications.

 Distributed systems are created while decoupling

the client and server objects.

 No client installment is needed with the exception of

java environment.

 While changing database, only server objects are

recompiled but not the interface and client program.

 REFRENCES
[1] Java Remote Method Invocation:

http://en.wikipedia.org/wiki/Java_remote_method_i

nvocati on

[2] Java RMI Tutorial:

http://www.eg.bucknell.edu/~cs379/DistributedSyst

ems/rm i_tut.html#serial

[3] The JavaTM Tutorials-RMI:
http://docs.oracle.com/javase/tutorial/rmi/

[4] Ninghui Li, John C. Mitchell and Derrick Tong,

“Securing Java RMI-based Distribute Applications”

[5] Jason Maassen, Rob van Nieuwpoort, Ronald

Veldema, Henri E. Bal and Aske Plaat, “An

Efficient Implementation of Java’s Remote Method

Invocation” (1999)

[6] Remote Method Invocation:

http://www.javacamp.org/moreclasses/rmi/rmi4.htm

l

[7] Remote Method Invocation:

 http://www.javatpoint.com/RMI
[8] Naming Methods:

http://www.cis.upenn.edu/~bcpierce/courses/629/jdk

docs/a pi/java.rmi.Naming.html

http://www.javatpoint.com/RMI

