
International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 292

DESIGN OF SDRAM MEMORY CONTROLLER USING AN OUT OF

ORDER SCHEDULER FOR IMPROVING THROUGHPUT

A. Lohitha
1
, T. Sudheer Kumar

2

D.V.R College of Engineering and Technology

ABSTRACT: SDRAMs are the most preferred form of

memories for use as a System memory in SOCs due to their

lower area compared to SRAMs. Memory controllers are

used to perform the DRAM specific functions like Refresh,

Activate and Precharge. A typical memory controller

consists of a Command generator and a Scheduler.

Designing an interface bridge between AXI and DDR3

SDRAM is the main objective of this paper. In this paper an

out of order scheduler is proposed, which will give higher

priority for the requests which belong to the same row as

the one that is currently activated. This will lead to less

number of Activates and Precharges as compared to the

first come first serve policy. The lesser number of Activates

and Precharges will lead to a higher system memory

throughput and contributes significantly to the

improvement of system performance as memory is the

bottleneck for high performance in any SOC. On an

average a minimum throughput of 30% is achieved with

“out of order scheduler” based memory controller

compared to first come first serve based memory controller.

Keywords: SDRAM, Memory Controller, AXI, Scheduler,

Precharges

I. INTRODUCTION

In this era of fast processors, there is a requirement for faster
and bigger memories. But today the speed of fetching data

from memories is not able to match up with speed of

processors. Memory devices are almost found in all systems

and nowadays high speed and high performance memories

are in great demand. For better throughput and speed, the

controllers are to be designed with clock frequency in the

range of megahertz. As the clock speed of the controller is

increasing, the design challenges are also becoming complex.

The big difference between DDR and SDRAM is that DDR

reads that on both rising and falling edges of the clock signal,

while SDRAM only carries information on the rising edge of
a signal. Because of that it transfer the data twice as fast as

SDRAM, it consumes less power[9]. This paper mainly deals

with the implementation of an interface bridge between AXI

and DDR3 SDRAM. The controller accepts the Read / Write

commands from interfacing bus and converts it into memory

access. While doing this it combines AXI burst transactions

into single DDR access where ever possible to achieve the

best possible performance from DDR3 memory. The AXI

DDR3 Controller allows access of DDR3 memory through

AXI Bus interface. The controller works as an intelligent

bridge between the AXI host and DDR3 memory. It takes

care of the DDR initialization and various timing
requirements of the DDR3 memory. Further enhancing the

AXI compliant DDR3 controller[7] to improve the overall

throughput of the DDR3 memory by modifying the
algorithm of DDR3 controller by “OUT OF ORDER

SCHEDULING ALGORITHM” which gives higher priority

to the requests that belongs to same row.

II. BLOCK DIAGRAM

Fig. 1. DDR SDRAM controller system

III. FUNCTIONAL DESCRIPTION OF DDR3

Table.1. DDR3 COMMANDS

Read and write accesses to the DDR SDRAM are burst

oriented; accesses start at a selected location and continue for

a programmed number of locations in a programmed

sequence. Accesses begin with the registration of an

ACTIVE command, which is then followed by a READ or

WRITE command[4].

A. ACTIVE
The ACTIVE command is used to open (or activate) a row in

a particular bank for a subsequent access. This row remains

active (or open) for accesses until a Precharge (or READ or

WRITE with AUTOPRECHARGE) is issued to that bank. A

PRECHARGE (or READ or WRITE with

AUTOPRECHARGE) command must be issued before

opening a different row in the same bank.

B. READ

The READ command is used to initiate a burst read access to

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 293

an active row. If auto precharge is selected, the row being

accessed will be precharged at the end of the read burst; if

auto precharge is not selected, the row will remain open for

subsequent accesses.

C. WRITE

The WRITE command is used to initiate a burst write access

to an active row. If auto precharge is selected, the row being

accessed will be precharged at the end of the write burst; if

auto precharge is not selected, the row will remain open for

subsequent accesses.

D. PRECHARGE

The PRECHARGE command is used to deactivate the open

row in a particular bank or the open row in all banks. The

bank(s) will be available for a subsequent row access a
specified time (tRP) after the precharge command is issued.

Once a bank has been precharged, it is in the idle state and

must be activated prior to any READ or WRITE commands

being issued to that bank. A PRECHARGE command will be

treated as a NOP if there is no open row in that bank, or if the

previously open row is already in the process of precharging.

IV. THE AXI PROTOCOL

The AXI protocol is burst-based and defines the following

independent transaction channels:

 read address channel

 read data channel

 write address channel

 write data channel

 Write response channel

An address channel carries control information that describes

the nature of the data to be transferred. The data is transferred

between master and slave using either:

A write data channel transfer data from the master to the

slave. In a write transaction, the slave uses the write response

channel to signal the completion of the transfer to the master.

A read data channel transfer data from the slave to the
master.

V. AXI COMPLIANT DDR3 CONTROLLLER

The AXI COMPLIANT DDR3 Memory controller design

consists of following blocks.

 AXI interface

 DDR interface

Figure .2. AXI compliant DDR3 Controller.

 DDR3 memory interacts with the DDR3 interface and AXI

channels are interact with the AXI interface.

A. ARCHITECTURE OF MEMORY CONTROLLER

Figure 3. Architecture of AXI compliant DDR3 controller

B. SIGNAL FLOW OF AXI COMPLIANT DDR3

CONTROLLER

Figure.4. SIGNAL FLOW of AXI compliant DDR3

controller

C. ARBITER

The arbitration mechanism is used to ensure that only one

Request (read/write) enters the FIFO. The arbiter performs

this function by observing a number of different requests to

use the bus and decide which is currently the highest priority

requesting the bus. The arbiter block selects the one request

either read request or write request when two requests are

valid. The selection of request based on the previously

completed write or read request.

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 294

Inputs channels of the arbiter

 Write Address channel

 Read Address channel

Internal logic for write operation

Figure .5 Arbiter

D. WRITE/READ ADDRESS FIFO

First in first out (FIFO)

 FIFOs are often used to safely pass data from one clock

domain to another asynchronous clock domain. Using a

FIFO, pass data from one clock domain to another clock
domain requires multi-asynchronous clock design techniques.

We can write the data into the FIFO up to the FIFO is FULL

and we can read the data from the FIFO until the FIFO

become EMPTY. FIFO status cannot be corrupted by invalid

requests. Requesting a read operation while the EMPTY flag

is active will not cause any change in the current state of the

FIFO. Similarly, requesting a write operation while the

FULL flag is active will not cause any change in the current

state of the FIFO.

E. COMMAND GENERATOR
The main purpose of the command generator is to generate

the command for the memory. Depending on address lines

command generator performs the operation. The address

lines which command generator is received is predefined The

inputs of the command generator are taken from the output of

Write/Read address channel FIFO rd_ptr. Based on the given

address the command generator generate the required

commands (active, precharge, LMR, write, read) for the

DDR3 memory.

Figure 6. Command generator

Inputs of the command generator

A(W/R)ID[3:0], A(W/R)ADDR[31:0], A(W/R)LEN[3:0],

A(W/R)BURST[1:0], A(W/R)VALID, A(W/R)READY

Outputs of the command generator
LMR, ACTIVE, WRITE, READ, PRECHARGE commands

Based on 3 conditions, Command generator is generate the

commands

(i) No row is open

(ii) Currently open row = requested open row

(iii) Currently open row ≠ requested open row

 Before generating the commands, the command generator

checks the write/ read address length with same ID.

(i) No row is open

When No row is open condition the LMR, ACTIVE,

WRITE, READ commands are generated

(ii) Currently open row = requested open row
When No row is open condition the LMR, WRITE, READ

commands are generated

(iii) Currently open row ≠ requested open row

When No row is open condition the, PRECHARGE, LMR,

ACTIVE commands are generated

Command generation table

Function Addresses

Load Mode Register(LMR) 000, burst

Precharge(PRE) 001, row address

Active 010, row address

Write 011, column address,

AWID

Read 100, column address,

ARID, burst length.

No operation(NOP) 101

Table2. Command generation

F. DDR COMMAND FIFO

The command generator is generate all required commands
at the same time. These commands are stored in the

command FIFO

G. DDR SCHEDULER

The scheduler will take the commands from the command

FIFO and generate the required signals for the DDR memory

The command scheduler will not process all the commands

at the same time. Scheduler works on command address,

burst length, different ID‟s. Scheduler takes the input from

the command generator to release the appropriate command

for the next operation. If the state in reset mode, then data,
DQM, address, FIFO read and writes pointers are assigned as

„0‟. Otherwise the command scheduler issues command for

LMR. The LMR gives different modes of operation. It also

defines the length of the burst. We have two different lengths

of burst‟s 4 and 8. The command address for the LMR is

„000‟. After the LMR operation the Scheduler has two

choices for scheduling commands, one is go for precharge

other one is active mode. Precharge command issued when

there is a change in row address. The active command is

issued when LMR in same mode and it need go for read or

writer operation. Precharge command changes the row

address and it went pass to the new row. Activate command

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 295

responsible two transfer to the two ways read operation or

write. Which it needs to prefer is depend on the command

issued by the scheduler. If scheduler issues write command

then write operation is perform in FIFO. Write operation is in
progress when FIFO has the free space in it. Write operation

start at the FIFO of write pointer. If scheduler issues read

command then read operation is perform in FIFO. Read

operation start at the FIFO of read pointer.

Inputs of the DDR Scheduler

LMR, ACTIVE, WRITE, READ, PRECHARGE commands

OUTPUTS of the DDR Scheduler

RASb, CASb, WEb, DQ, DQM

Figure 7 DDR Scheduler

VI. SIMPLIFIED STATE DIAGRAM OF THE DDR

SCHEDULER

State Diagram provides a quick reference of available

commands. Two additional Truth Tables provide current

state/next state information. DESELECT and NOP are

functionally interchangeable. The commands to the scheduler

are generated by the command generator. Command

generator checking for the burst length, write and read ID‟s.

Command generator works on different addresses like row

address, column address, write and read ID address, burst
lengths. It gives commands to do a particular operation in

mean time. Command scheduler issues the commands for

LMR, precharge (PRE), active (ACT), read (RD), write

(WR). Command scheduler work with different modes and

states. It has the ability to control the all states in the

diagram. Applies only to READ bursts with auto precharge

disabled; this command is undefined (and should not be used)

for READ bursts with auto precharge enabled and for

WRITE bursts. This command is AUTO REFRESH if CKE

is HIGH; SELF REFRESH if CKE is LOW. CKE is HIGH

for all commands shown except SELF REFRESH; all states
and sequences not shown are illegal or reserved.

Figure 8 Simplified State Diagram of the DDR Scheduler

VII. OUT OF ORDER SCHEDULER

For improving throughput of the memory controller, an out

of order scheduler is used in place of the arbiter. Rest of the

command generator and command scheduler remains the

same.

Architecture of Out of Order based Memory Controller

Figure 9. Architecture of Out of Order based Memory

Controller.

A. Out of Order scheduler

The arbitration mechanism is the primary function of this

scheduler which is used to ensure that only one Request

(read/write) enters the FIFO. Similar to arbiter, out of order

scheduler also performs this function by observing a number

of different requests to use the bus and decide which is
currently the highest priority requesting the bus. This

scheduler block selects the one request either read request or

write request when two requests are valid. The selection of

request based on the previously completed write or read

request. Apart from selecting one request at a time, out of

order scheduler also priorities the request based upon the

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 296

currently activated row. Requests are stored in a FIFO, which

are then processed based upon the row address. The request

which belong to same row are first processed than the request

whose row address is different than the currently opened row
address. With this we can reduce lesser number of Precharge

and Activate states, there by improve the overall throughput.

This can be achieved by using a register which can store a

row address of the row which is currently opened and then

comparing the next requests in sequence against the current

open row address and then processing that request first.

B. Improvement in throughput

Consider a series of requests which are to processed, through

a memory controller:

Series of Memory Operations

WRITE DATA => R1 , C1

WRITE DATA => R2 , C2

WRITE DATA => R1 , C3

WRITE DATA => R3 , C4

WRITE DATA => R2 , C3

Notation: WRITE DATA=> R1,C1 writing data to column

C1 of Row with row address R1.

When these requests are processed by a FIFO based Memory

Controller then the operations performed by the memory are

in the following order:

Operations performed by Memory

LMR , ACTIVATE R1, WRITE C1

PRECHARGE R1, LMR , ACTIVATE R2, WRITE C2

PRECHARGE R2,LMR, ACTIVATE R1, WRITE C3

PRECHARGE R1, LMR, ACTIVATE R3, WRITE C4

PRECHARE R3,LMR, ACTIVATE R2, WRITE C3

TOTAL OPERATIONS PERFORMED BY MEMORY: 19

Using an Out of Order scheduler in place of Arbiter and if we

reorder the memory request to

Series of Memory Operations

WRITE DATA => R1 , C1

WRITE DATA => R1 , C3

WRITE DATA => R2 , C2

WRITE DATA => R2 , C3

WRITE DATA => R3 , C4

Operations performed by Memory

LMR , ACTIVATE R1, WRITE C1

LMR , WRITE C2

PRECHARGE R1,LMR, ACTIVATE R2, WRITE C2

LMR, WRITE C3

PRECHARE R2, LMR, ACTIVATE R3, WRITE C4

TOTAL OPERATIONS PERFORMED BY MEMORY: 15

Thus using an out of order scheduler based memory

controller for the four write operations specified above there

is a reduction of two Precharge and two activate operations

by memory when compared to FIFO based memory

controller. Thereby throughput of Memory using an Out of

order scheduler is improved.

VIII. SIMULATION RESULTS

We are performing following 4 operations
1. Writing data 32‟d0 to 32‟d10 to the memory at

32‟d0 address

2. Writing data 32‟d11 to 32‟d21 to the memory at

32‟d200 address

3. Reading data from memory at 32‟d0 address

4. Reading data from memory at 32‟d200 address

Simulation results with FIFO based Memory Controller:

Figure 10. Simulation results of FIFO based Memory

controller

The above specified four operations in time period of

24600ns .

Simulation results with out of order based Memory

Controller:

Figure 11.Simulation results of Out of order based memory

controller

International Journal For Technological Research In Engineering

Volume 2, Issue 4, December-2014 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2014.All rights reserved. 297

Time at which above specified operations completed is

16800ns. Thus using out of order scheduler there is

improvement in throughput in time period of 7800ns.

However a minimum or maximum improvement in
throughput cannot be guaranteed as it entirely depends on the

requests for the memory. In the above specified case, we are

able to produce an average of 30% gain in throughput.

XI. CONCLUSION

User transactions are transferred repeatedly, without any

delay in between its maximum operating frequency. We

performed the AXI interface in scenario with one master and

one slave. This design supports AXI protocol (32 or 64 bit)

data width, remapping, run time configurable timing

parameters & memory setting, delayed writes, multiple

outstanding transactions and also supports the automatic
generation refresh sequences. Out of Order scheduler based

memory controller provides an improved throughput,

however at the cost of additional circuitry. Depending upon

timing requirement of the application, memory controller can

be implemented with or without out of order scheduler. We

examined the performance of the both the designs by

generating different type of AXI commands and noting down

the time taken by the DDR3 controller in finishing them. In

most of the scenario the throughput of the design with “out of

order scheduler” is better compared to the design without

“out of order scheduler”.

 REFERENCES

[1] Shaila S Math, Manjula R B, “Design of AMBA

AXI4 protocol for System-on-Chip

communication”, International Journal of

Communication Network and Security (IJCNS),

Vol-1, Issue-3.

[2] Darshana Dongre, Prof.Anil Kumar Sahu.”

Implementation of AXI Design core with DDR3

memory controller for SoC”, International Journal

of Computer Technology and Electronics
Engineering (IJCTEE) Volume 1 , Issue 3

[3] ARM, AMBA AXI protocol specifications,

Available at, http://www.arm.com

[4] Sreehari,S.”AHB DDR SDRAM enhanced memory

controller” Advanced Computing and

Communication Systems (ICACCS), 2013

International Conference.

[5] Pan Guoteng, Luo Li , Ou Guodong , Dou Qiang,

 Xie Lunguo. ”Design and implementation of a

DDR3-Based memory controller”,INTELLIGENT

SYSTEM DESIGN AND ENGINEERING

APPLICATIONS (ISDEA),2013.
[6] Shaila S Math, Manjula R B, Manvi.”Data

transactions on system-on-chip bus using AXI4

protocol” Recent Advancements in Electrical,

Electronics and control Engineering

(ICONRAEeCE),2011.

[7] Lakhmani,V;Ali,N;Tripathi.V.S;”AXI Compliant

DDR3 Controller”, Computer Modelling and

simulation,2010.ICCMS‟10. Second International

Conference. Volume:4

[8] Samsung 1Gb DDR3 Specifications, Available at

“http://www.samsung.com”

[9] Micron 1Gb DDR3 Specifiactions, Available at
“http://www.micron.com”

[10] Anurag Srivastav, G.S.Tomar, Ashtosh Kumar

singh.”Performance comparision of AMBA Bus

Based System-on-chip communication protocol”,

IEEE International Conference on communication

systems and Network Technologies, 2011.

[11] Jun Zheng, Kang Sun,Xuezeng Pan, Lingdi

Ping.”Design of a Dynamic Memory Access

Scheduler” IEEE transl,Vol 7,pp 20-23,2007.

http://www.arm.com/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6924031
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6924031
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6924031
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6924031
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pan%20Guoteng.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Luo%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ou%20Guodong.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dou%20Qiang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xie%20Lunguo.QT.&newsearch=true
http://www.samsung.com/
http://www.micron.com/

