
International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 495

REVIEW ON VARIOUS CODE CLONE DETECTION TECHNIQUES

Amandeep Kaur
1
, Harpreet Kaur

2

Department of Computer Engineering

Punjabi University, Patiala

Abstract: The code clone is defined as copying the original

code and paste it either with or without modifications. Code

clone detection process also known as the reprocessing of

the original code. These clones make the entire code

redundant. The code cloning also leads to the new bugs in

the program. The code cloning has a major impact on the

software industry as it complex the design of the software

project and also difficult to improve the system. Source code

cloning represents as significant threat to the

maintainability of a software system. To handle these

problems, various code clone detection techniques are

proposed that are quite efficient in detecting the code

clones. The techniques mainly used for code clone detection

are: Text-based, Token-based, Tree-based, Program

dependency graph-based, Metric-based. In paper we review

the various techniques for detecting the code clones.

I. INTRODUCTION

Code cloning means coping the some segments, variables,

functions and then paste them in another program is known

as code cloning. In every software almost 7% to 23% code is

copied. This make the software redundant and its

maintenance cost is increases. especially many open source

code are commonly copied. So detection of these clones is

very necessary to maintain the software cost. The various

detection techniques are used on basis of which type of code
clone are present in the software.
TYPES OF CODE CLONE

There are 4-types of code clones.

TYPE-1: Identical clones in which only the white spaces,
comments and may layout can also vary.

TYPE-2: Structurally/Syntactically identical except for

variations in identifiers, literals, types, layout and comments.

TYPE-3: Copied fragments with further modifications. In

this the statements can be added or removed in additions to

layout, comments and syntax.

TYPE-4: In this type the functionality is same. Two

fragments perform the same computation but implemented

through different syntax.

The Type-1, Type-2, Type-3 code clones are known as

syntax clones whereas Type-4 is called semantic clone.

A. Clone Pair:

Clone pair: if there is an equivalence relation between two

code segments, then they form a clone pair.

B. Clone Class

Clone Class: It is defined as collection of similar code

segments. Each code segment in a clone class form a clone

pair with other code segment of that class.

C. CODE CLONE TERMS

Exact Clones: Two or more code fragments are called exact

clones if they are identical to each other with some
differences in comments and whitespace or layout.

Renamed Clones: People use the term renamed clones when

identifier names, literals values, comments or whitespace

changes in the copied fragments. Thus, a renamed clone is

essentially a Type II clone.

Parameterized Clones: A parameterized clone or p-match

clone is a renamed clone with systematic renaming. The

clone detector looks for consistent name matching rather

than normalizing all identifiers and/or literals to a especial

symbol. Parameterized clones are thus a subset of Type II

clones.
Near-Miss Clones: These are those clones where the copied

fragments are very similar to the original. Editing activities

such as changing in comments, layouts, changing the

position of the source code elements through blanks and new

lines, changing the identifiers and literals.

Gapped Clones: A gap clone code is partly similar to the

original segment. In this type of clones, there is some

different code portion between the segments. This different

code portion is known as a gap

Structural clones are simple clones within a syntactic

boundary following syntactic structure of a particular

language. These boundaries can be function boundary,
statement boundary, class boundary etc. depending on the

programming language of interest.

II. RELATED WORK

Various techniques can be found in the code clone literature

to detect code clones. Along with the techniques there are

number of tools available for various languages.

[1][3][4][8][9][10].

CODE DETECTION TECHNIQUES

A. TEXT- BASED APPROACH
Text-Based Approach: In this approach the two strings are

compared from the source. From the comparison the clone

pair and clone classes are found. In this no or little

transformation is applied. But the comments and white

spaces are removed from the code and hence normalization

can be applied on the source code. Baker’s Dup uses a

sequence of lines as a representation of source code and

detects line-by-line clones in the Text-based approach [6].

B. TOKEN-BASED APPROACH

Token-Based Approach: In this approach the tokens are

generated from the source code. The entire source system
can be lexed /parsed /transformed to a sequence of tokens.

International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 496

From the generated tokens the duplicated code can be

detected. CCFinder of Kamiya et al. have developed a code

clone detector for various languages using the token-based

approach [6].

C. TREE-BASED APPROACH

Tree-Based Approach: In this a program is parsed to a parse-

tree or abstract syntax-tree(AST) with a parser of the

language of intrest. Similar sub-tree are searched by using

any of the tree based technique and duplicated code are

detected from these sub-trees. The parse or AST tree contains

the complete information about the source code. Koschke et

al discuss a technique that uses a suffix tree to identify

clones. In their technique first AST is generated which is

serialized and then suffix tree are formulated. The technique

helps in detecting the Type-1 as well as type-2 clones[5].

D. PROGRAM DEPENDENCY GRAPH-BASED

APPROACH

Program Dependency Graphs-Based Approach (PDGs):

PDGs represent the structure and data flow within the

program. In this approach we try to identify the similar sub-

graphs from the source code. Identified sub- graphs can be

mapped back onto to the program and presented to the user.

Komondoor and Horwitz PDG-DUP which finds the

isomorphic PDG sub-graphs using the program slicing.

Whereas Krink uses an iterative approach for detecting
maximal similar sub-graphs[6].

E. METRIC-BASED APPROACH

Metric-Based approach: This approach calculates the metric

from the source code and uses these metrics to measure the

clone in the software. Rather than working on source code

directly this approach uses metrics to detect the clones. It

gathers the different metrics for code fragments and compare

these metrics vectors instead of comparing code directly.

Mayrand et al. calculate several metrics for each function

unit of a program. Units with the similar metrics values are
identified as code clones[6].

III. PARAMETERS USED FOR CODE CLONE

DETECTION TECHNIQUES.

There are several code clone detection techniques.

The comparison of these techniques is much worth to pick

the right techniques for the problem statement. Different

parameters have been chosen for comparison of five

techniques (text-based, token-based, tree-based, graph-based,

metric-based).These parameters are also known as the clone

challenges.

Some of the parameters are stated below:-

 Portable:-The techniques should be portable for

multiple languages and dialects. As many

programming languages are used with several

dialects. It is expected that clone detection

techniques should be easily portable and

configurable for different languages.

 Precision:-The techniques should be sound enough

to detect the less number of false positives. It is also

being said that techniques should find the

duplicated code with higher precision.

 Recall:-The techniques should be capable of finding

the clones that are used for system interest i.e.

according to the software project.

 Scalability:-It is difficult to find the clones of the

code from the large and complex system. The

techniques would be scalable to handle the large

and complex system with efficient use of memory.

 Robustness:-A good technique should be robust for

different editing activities that are applied on copied

fragment and detect the clones with higher precision

and recall.

ANALYSIS OF VARIOUS DETECTION TECHNIQUES

As we have seen that there are various code clone detection

techniques which are used to detect the clones of the code

from the original one. There are various parameters stated to

choose the right technique and tools. We see that text-based

techniques (line-based and parameterized line-based in the

table) are easily adaptable to different languages. Token

based techniques use suffix tree algorithm to detect the clone

and also break the code into the token. The Tree-based

techniques look at the structural properties of the source

code. The PDG-based techniques use the complex graph and
flow among the codes which are complex. In the Metric-

based technique first the metric are detected than other

parameters are calculated from these metrics.

S.

no.

Name of

techniques

Computation-

al complexity

Precision-

n

Recall-l

1 Text-

based

Depends on

algorithm

High Low

2 Token-

based

linear Low High

3 Tree-

based

Quadratic High Low

4 PDG-

based

Quadratic High Medium-

m

5 Metric-

based

linear Medium Medium-

m

Fig.1

IV. CONCLUSION

Many techniques are used to detect the code clones. This

paper provides a brief overview of various techniques. No

single technique is good for all type of code clone detection.

Token-based approach has medium portability, low

Precision, high Recall and high scalability whereas the

Metric-based approach has low portability, medium

precision, medium Recall and High Scalability. In the future

we will combine both the approaches for higher accuracy to

detect the clone of the code and simulate it on the VB.NET

by using the source code of C\C++. Therefore this area
provides a lot of opportunities for research.

International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 497

 REFERENCES

[1] Lifang Han1, Baojiang Zhang1,Zhongxian Li,

Jianxin Wang2, Yongle Hao 3CNITSECBeijing,

China.
[2] Dep. of Electronic and Information Engineering

Kumamoto National College of Technology 2627

Hirayama-Shinmachi, Yatsushiro, Kumamoto,

Japan.

[3] Yang Yuan and Yao Guo Key Lab of High-

Confidence Software Technologies (Ministry of

Education) Department of Computer Science,

School of EECS, Peking University Beijing 100871,

P. R. China.

[4] Geetika Bansal, Rajkumar Tekchandani Computer

Science and Engineering Thapar University Patiala,

India.
[5] CODE CLONE DETECTION A NEW APPROA-

CH- Sanjeev Chakraborty

[6] Chanchal Kumar Roy and James R. Cordy

September 26, 2007.

[7] Filip Van Rysselberghe, Serge Demeyer University

Of Antwerp Middelheimlaan 1, B 2020 Antwerpen

[8] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo,

Hiroshi Igaki and Shinji Kusumoto Graduate School

of Information Science and Technology, Osaka

University, 1-5, Yamadaoka, Suita, Osaka, 565-

0871, Japan.
[9] Kanika Raheja, Rajkumar Tekchandani CSED,

Thapar University, India.

[10] Florian Deissenboeck, Benjamin Hummel, Elmar

Juergens Institut für Informatik, Technische

Universität München

