
International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 556

WHITE BOX TESTING OF JAVA RMI PROGRAM BY APPLYING

PROGRAM SLICING TECHNIQUES

Jasmit Patel
1
, Mehul Patel

2

1
Department of Computer Science &Engineering, Government Engineering College, Modasa

2
Department of Information Technology, SK Patel College of Engineering, Visnagar

ABSTRACT: Distributed Architecture is the latest

technology for the today’s business or enterprise.

Distributed applications are becoming the need of today’s

enterprise world. Success of any technology any

engineering product lies on the quality of Service. Quality

of Service is assured by testing. Till now in Distributed

environment testing is limited by black box testing only

functional requirements can be tested. If the distributed

program is complex than it become difficult to test it, for

black box testing does not test internal working of the

program. Therefore to test complex distributed program

become challenge to the tester. If we have white box testing

technique in Distributed Architecture it will motivate the

development of the complex program. Here we are going to

apply Dynamic slicing technique for white box testing in

program. These enable us to compute dynamic slice of

program, Which can be useful for error finding in the code

efficiently, since slice of the program is having less number

of statements as compare to original code. More over

Dynamic slice is based on the input parameters, and

therefore it is optimal as compare to static slice.

Index Terms: White Box Testing, Program Slicing,

Program Debugging, Dynamic Slicing, Distributed

Programs, Remote method invocation

I. INTRODUCTION

The complex nature of Distributed Software and speedy and

rapid deployment of program inevitably leads to oversights.

Testing programs minimize errors, increases the user's

confidence, and hence increases quality of service.

Distributed programs uses standard protocols such as Web

Service Description Language(WSDL) to describe and locate

service, Universal Description Discovery and
Integration(UDDI) that store metadata information about

Service to publish WSDL, and Simple Object Access

Protocol(SOAP) to exchange messages among services[17].

Standardized protocols lead to efficient interoperability

among heterogeneous systems. Testing services spans

through all these layered protocols. WSDL contains abstract

description (Port Type, operation, message) and concrete

description(binding, port,and service). However this

information are not sufficient to test distributed program, one

also requires data dependency and control dependency and

using these dependence we can prepare dependence graph,

and applying program slicing technique.

Figure-1 RMI Program Architecture [8]

Distributed applications are growing in both numbers and

complexity. Complex program require more effort to ensure

the quality of the service by testing. In Distributed

environment the program is tested in the IDE (i.e., Net beans

or visual studio or eclipse), although the testing facility is

provided by the software it is the kind of the testing were we

don’t know what is happening in the testing internally, just

we can check whether the output given by the program is

correct or not. This falls in the category of black box testing.
This kind of testing test the program until it is not so

complex, but in case of complex program it is necessary to

know how the flow is going and which variable are being

affected and by which statement, etc. White box testing in

the Distributed environment may become a great need in

developing and testing complex programs, because there is

no any method for white box testing for the Distributed

program and the only method for testing the Distributed

program is black box testing[5]. Here we are applying the

program slicing technique for white box testing of the

Distributed program.

II. PROGRAM SLICING

Set of all statements that might affect the value of a variable

occurrence is totally independent of the program input

values[1].A program slice consists of the parts of a program

that (potentially) affect the valuescomputed at some point of

interest. Such a point of interest is referred to as a slicing

criterion,and is typically specified by a location in the

program in combination with a subset of theprogram’s

variables [14].

The parts of a program that have a direct orindirect effect on

the values computed at a slicing criterion C constitute the
program slice withrespect to criterion C. The task of

computing program slices is called program slicing.Program

slicing makes various tasks like debugging, testing and

International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 557

maintenance easier. Testing and debugging a smaller part of

program is much easier than the complete very large

program. In programs Program slicing is implemented using

PDG. (Program dependence graph) The Program dependence
graph is the graph whose nodes are the statement in the

program and edge of the graph represents the dependence

between them. The edges of the graph are of two types one is

data dependence edge and other is control dependence. [2] A

data dependence edge from vertex vi to vertex vj means

computation is performed at vertex vi directly depends on the

value computed at vertex vj. In other words the computation

at vertex vi uses a variable, that is defined at vertex vj, and

also there is an execution path from vj to vi. A control

dependence edge from vi to vj means that node vi may or

may not be executing depending on the Boolean outcome of

the predicate expression at node vj.

Fig. 2. Program Dependence graph for Figure 1 for input

value X=5, where slice consists of statements 1, 2, 3 and 10.

Here solid edge represents data dependence and dashed edge

represents control dependence. And darken node represents
the slice of the program. [1]

A. Static Slicing vs Dynamic Slicing.

It has been shown that dynamic slicing is efficient than static

slicing as it takes less memory because the size of the slice

produce dynamically is small. Finding all statements that

really affected the value of a variable occurrence for the

given program inputs[3]. In dynamic slicing always less or

equal number of statements than static slicing.

Technique Pros Cons Applications

Static Program Slicing Easy to Understand Static Slice is not
minimal slice

Software Quality Assurance,
Software maintenance, Program

Integration

Easy to Implement

Slice is computed without making

assumption regarding program's
input

International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 558

Dynamic Program

Slicing

Slice is computed with making

assumption regarding program's

input

Little difficult to

implement than Static

Slicing

Testing, Debugging, Performance

Improvement

Dynamic Slice is minimal slice

III. WHITE BOX TESTING OF RMI(REMOTE METHOD

INVOCATION) PROGRAMS USING DYNAMIC
SLICING

We can test the one of the distributed program is Remote

Method Invocation. In this computing two different programs

used are server side program and client side program. Server

is register at the registry and client lookup the object of the

server. After fetching the object from registry, client can

invoke the method of server with the use of intranet or

internet. Since in Server side program code is directly not

available at the run time, therefore we have to make some

assumption as below.

 The server code is available to us and we are testing
RMI program before using it.

 The computer on which the Server code is published

(RMI directory service – Registry) is available and

it is working correctly.

 Our method of white box testing in Distribution

environment is the testing before we deploy the

program.

We have introduced three new graphs to understand the

dependency of each other and developer can find the issue

easily and solve error immediately.

A. Server Dependence Graph
In order to make slice of a RMI program we would have to

use deferent type of directed graph, Server Dependence

Graph. (SDG). In SDG following types of dependencies are

identified

 Data Dependence

 Flow dependence

 Callee Dependence

Data Dependence is a type of dependency in which particular

statement depends on any data or variable. Flow dependence

is a type of dependency in which particular statement

depends on the flow of the execution. Here we go for the
testing of the server program before connecting and therefore

we don’t have to access to the service code of the remote

machine. In SDG the nodes are the statement number, and

edges are of three types. One is data dependent edge, second

is flow dependent edge, and the third is callee dependent

edge. For Data dependence if there is a node from vj to vi

then we can say that statement vj depends on the variable

from statement vi. For if flow dependence, if there is a node

from vj to vi then we can say that statement vj depends on the

flow of execution from statement vi or in other words

statement vj depends on the result of the local called server
program from statement vi. For callee dependence, if there is

a node from vj to vi then we can say that statement vjn

depends on the result of server program called from remote

machine from statement vi.

B. Client Dependence Graph

There is other kind of the directed graph at client called

Client Dependence Graph. The control/flow moves from

Client Dependence Graph to server Dependence Graph when

the web method is called. There are only two kind of the

dependence in the CDG. One is Data dependence and other

is Control dependence. Data Dependence is represented as

solid line. Control dependence is represented as dashed line.

Control dependence occurs in the statements of looping or

branching or jumping or when server program is called.

 Data Dependence

 Control dependence

C. Distributed Program Dependence Graph

The Distributed Program Dependence Graph contains Server

Dependence Graph (SDG) and Client Dependence Graph

(CDG). SDG represents the whole structure of the RMI

server program call and CDG represents the whole structure

of the RMI Client program call. The Registry call is added in

new Distributed Program Dependence Graph. Server can add

new service in Registry (Directory service).

 Callee dependence

 Registry dependence

IV. ALGORITHM FOR DISTRIBUTED

DYNAMICSLICING (DDS)

Input: Server Code, Server Implementation Code, Client

code, Slicing Criterion (< S, V >)

Output: Dynamic slice

Stage 1: Construction of DPDG.

Stage 2: Compute Slice for DDS

Stage 1: Construction of DPDG
a) Construct SDG

1. Node construction

a. Create two special nodes start stop

 b. For each statements of RMI Program do

 i. Create a node s

 ii. Initialize the node with its type, list of

variables used or defined, and its scope

2. Add data dependence or flow dependence or registry

dependence

 For each node ui do following

 For each node uj do following
 a. Add data dependence edge (ui, uj), if

one or more variables or data is used at nodeuj from node ui

International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 559

 b. Add flow dependence edge (ui, uj), if

flow moves from node ui to node uj

 c. Add Registry dependence edge(ui,

registry), if node ui can
 bind the object with registry.

b) Construct CDG

1. Node construction

 a. Create two special nodes start and stop

 b. For each statement s of RMI program, do

 i. Create a node s

 ii. Initialize the node with its type, list of

variables used or defined, and its scope

2. Add data dependence or control dependence or callee

dependence
 For each node ui, do following

 For each node uj, do following

 a) Add data dependence edge (ui, uj), if one or more

variables or data is used at node uj from node ui.

 b) Add control dependence edge (ui, uj), if control

moves from node ui to node uj.

 c) Construct DPDG

 1. In CDG if program is called from node

ui to node vi then add callee dependence edge (ui, vi)

 2. If program returns data from node ui to

client node vi add callee dependence edge (ui, vi)

Stage 2: Compute Slice for DDS.

1) For every variable v used at node uj from ui do

 a. Mark data dependence (ui, uj), if any data or

variable used at node uj from node ui.

b. Mark control dependence (ui, uj), if flow of

control depends on node ui from node uj.

 c. Mark callee dependence (ui, vi), if program is

called from

 node ui node vi.

2) Trace execution.
3) Remove unmarked node from distributed program.

4) Set of Marked nodes is dynamic slice.

V. CHALLENGES TO WHITEBOX TESTINGOF

DISTRIBUTED PROGRAMS

A. Unavailability of the server code:

In Distributed Architecture program is described by the Web

Service Description Language (WSDL) and located using

Registry (i.e. UDDI). In such environment only server

interface is available, Server code is not available to the third

party (i.e. Service Consumer) in that case we have to take

assumption about the availability of the server code at the
time of testing[5].

B. Reliability of the Registry:

Registry is the service provider so that it can working as per

the server bind the object with registry and client lookup the

server object from the registry.

C. Knowledge of Distributed programs:

As we have going to test with program slicing is the white

Box testing techniques so that it may require the

programming knowledge of the working of distributed

program.

D. Composition of the server code:

1) Intra domain: In Intra domain Server, Server is on the

same domain, and can be used for that domain only.

2) Inter domain but intra network: In inter domain but intra

network server is deployed on another machine on the same

network. This server can be access with the speed of the

network speed. It is also affected by the reliability of the

network.

3) Inter domain but internetwork: In inter domain and

network the server is deployed on another machine in the

different network, in such case it is highly dependence on
speed of network and reliability of the network.

VI. CONCLUSION & FUTURE WORK

This method of slicing allows us to compute slice of the RMI

Program. By computing slice of the RMI program we can

test the program by white box testing, thus it becomes

possible to test the program with one by one statement. And

we can keep watch on any variable or the flow of the control

as we do in debugging in traditional program (i.e. C/C++).

We can also improve performance of the program by

removing unwanted code. Using the dynamic slicing of
white Box testing find the fault or bug easily and solve

immediately. In future, we are going to implement white box

testing for RMI distributed program. We need to make the

tree representation. We need to prepare three graphs, Server

Dependence Graph (SDG), Client Dependence Graph (CDG)

and Distributed program Dependence Graph (DPDG).

Moreover since We would have to prepare user interface of

program according to its input parameters and output

parameters along with their data types.

This type of technique can be applied to find the slice of the

RMI program. Here we apply dynamic slicing technique; we
can also apply other techniques to compute the slice for the

distribution program. Development of this technique will

lead to the evolution in the field of Distributed Architecture.

There are different ways to implement the graph in computer

world we can apply the different techniques to implement the

graph, and we can use the most suitable technique.

 REFERENCES

[1] Hiralal Agrawal, Joseph R. Horgan, “Dynamic

Program Slicing”, ACM SIG-PLAN'90 Conference

on Programming Language Design and

Implementation, New York, June 20-22 ,1990.
[2] Mark Weiser, “Program Slicing”,

IEEETRANSACTIONSONSOFTWAREENGINEE

RING,VOL.SE-10, NO.4, JULY 1984.

[3] Vijay K. Garg ,Neeraj Mittal, “On Slicing a

Distributed Computation”, 21st International

Conference of distributed computing systems, April

2001.

[4] Harkishan Rathod, "Testing Web Services by

International Journal For Technological Research In Engineering

Volume 2, Issue 6, February-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 560

Applying Program Slicing", International Journal of

Advance Research in Computer Science and

Management Studies, Volume 2, Issue 1, January

2014
[5] Durga Prasad Mohapatra, Rajib Mall, Rajiv Kumar,

“Distributed Dynamic Slicing of Java Programs”,

International Conference, ICDCIT 2004

[6] Mrs. Sonam Jain, Mr. Sandeep Poonia, "A New

approach of program slicing:Mixed S-D (static &

dynamic) slicing." International Journal of

Advanced Research in Computer and

Communication Engineering Vol. 2, Issue 5, May

2013

[7] Dr. Roger Eggen, Dr. Maurice Eggen, “Efficiency

of Distributed Parallel Processing using Java RMI,

Sockets, and CORBA”, International Conference on
Parallel and Distributed Processing Techniques and

Applications 2001.

[8] S.S. Barpanda D.P. Mohapatra. "Dynamic slicing of

distributed object-oriented programs." IET

Software, April 2011.

[9] Sanjay P. Ahuja , Renato Quintao. " Performance

Evaluation of Java RMI: A Distributed Object

Architecture for Internet Based Applications." 0-

7695-0728-WOO$ 10.00 0 2000 IEEE.

[10] Mohapatra, Durga Prasad, Rajib Mall, and Rajeev

Kumar. "An overview of slicing techniques for
object-oriented programs." Informatica (Slovenia)

30.2 (2006): 253-277.

[11] Chengying Mao. "Web Service-based Software."

978-1-4244-5299-6/09/$26.00 (c)2009 IEEE.

[12] Neeraj Mittal, Vijay K. Garg. “Software Fault

Tolerance of Distributed Programs Using

Computation Slicing.” 23rd International

Conference on Distributed Computing Systems

(ICDCS’2003).

[13] Frank Tip, “A Survey of Program Slicing

Techniques”.
[14] Durga Prasad Mohapatra, Rajib Mall and Rajeev

Kumar. "A Novel Approach for Computing

Dynamic Slices of Object-Oriented Programs with

Conditional Statements." IEEE INDIA ANNUAL

CONFERENCE 2004

[15] Riazur Raheman, Amiya Kumar Rath, M Hima

Bindu. “An Overview of Program Slicing and its

Different Approaches.”, International Journal of

Advanced Research in Computer Science and

Software Engineering , Volume 3, Issue 11,

November 2013.

