
International Journal For Technological Research In Engineering

Volume 2, Issue 7, March-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 1350

MONITER BASED SPECIFICATION OF PCI OF INDUSTRY

GRADED PROTOCOL

M.Vinod Gupta
1
, T.Mounika

2
, N.Sateesh Reddy

3
, S.Rajesh Kumar

4
, K.Prasanna Kumar

5

1,2,3,4
Student,

5
Asst. Prof

Department of ECE, Lendi Institute of Engineering and Technology, Vizianagaram, India

ABSTRACT: Bus protocols are hard to specify correctly,

and yet it is often critical and highly beneficial that their

specifications are correct, complete, and unambiguous. The

informal specifications currently in use are not adequate

because they are difficult to read and write, and cannot be

functionally verfied by automatedtools. Formal sp

ecifications, promise to eliminate these problems, but in

practice, the difficulty of writing them limits their

widespread acceptance. This paper presents a new style of

specification based on writing the interface specification as

a formal monitor, which enables the formal specification to

be simple to write, and even allows the description to be

written in existing HDLs. Despite the simplicity, monitor

specifications can be used to specify industry-grade

protocols. Furthermore, they can be checked automatically

for internal consistency using standard model checker

tools, without any protocol implementations. They can be

used without modification for several other purposes, such

as formal verification and system simulation of

implementations. Additionally, it is proved that

specifications written in this style are receptive,

guaranteeing that implementations are possible. The

effectiveness of the monitor specification is demonstrated by

formally specifying a large subset of the PCI 2.2 standard

and finding several bugs in the standard.

I. INTRODUCTION

VHDL style is based on writing the specification as a formal

monitor. A monitor is an observer in a group of interacting

modules, or agents which communicate via a set of protocol

rules. Its main task is to flag agents when they fail to uphold

the protocol. Writing the specification as a monitor enables

the specification to be written as a list of simple rules, thus,
allowing formal specification to be a relatively easy process.

It also allows the specification to be checked “stand-alone”

where no implementation needs to be written to verify the

protocol. Furthermore, it results in a synthesizable

specification which can be directly used in testing

environments where cycle-based models are needed. Another

direct use is for modeling environments when model

checking an implementation. And despite its simplicity, a

monitor specification can be written for “real” protocols such

as the widely-used PCI local bus protocol. We also describe

several highly effective debugging methods for monitor-style

specifications. It is explained how certain requirements on
the specification style discourages errors and how the

debugging methods further ensure correctness and absence of

contradictions. One highlight with a monitor specification is

that debugging can be done on the protocol based on its

internal consistency, before any implementations are

designed. Furthermore, if two easy-to-check properties holds

for the specification, it is guaranteed that the specification is

receptive. Receptiveness guarantees that an implementation

exists for the specification, and that there is no illusory

freedom in the specification. On a practical level, these

debugging methods found several problems in the official

PCI protocol when they were applied to a specification of

PCI.
The primary contributions of this paper are:

- The definition of a simple yet powerful specification style

that is resistant to specification errors;

-Presentation of general specification debugging

methodology, which does not require any implementations;

– A report on the successful application of the specification

style and debugging methodology to PCI, and the resulting

discovery of bugs in the protocol

– A theorem stating that the specification style together with

a simple-to-check property, guarantees the receptiveness of a

specification.

II. THE SPECIFICATION MONITOR

A. Description - the Specification Written as a Monitor

A bus protocol specification can be viewed as a specification

for a complete, closed system of agents using the bus. In

Figure 1, agents 0,1,2,3 are using the bus and O0, O1, O2,

O3 are the corresponding output sets. Because of the bus, the

inputs for each agent are the outputs of other agents. (For

agent 1, its inputs are O0, O2, and O3).A bus protocol

specification dictates the behavior of all the outputs relative

to each other. A monitor that checks the agents’ compliance

to the protocol at each execution step can be written. It is a
machine with the agent output signals as its inputs, and

boolean correcti signals as its outputs (figure 2). The monitor

is such that as soon as an agent (or several agents) breaks the

bus protocol, it singles out the erring agent(s) by making the

corresponding correcti signal false. If correcti is true, agent i

has upheld the specification so far and its current outputs

also conform to the specification. If correct I is false, agent i

International Journal For Technological Research In Engineering

Volume 2, Issue 7, March-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 1351

has broken a specification requirement currently or sometime

in the past. Thus, correcti is “sticky”; once a rule has been

broken, the corresponding correcti stayes false forever. The

specification style is based on writing the specification as
such a monitor.1 After all, the monitor must have exactly the

protocol information to decide on agent compliance so it is

natural for the protocol specification to be in the form of

a monitor; it differs from the conventional view of a

specification only because it is an active machine as opposed

to a passive documentation. The immediate benefits of this

are the direct applications of such a specification.

B. For Model Checking a Single Implementation:

To verify a single agent implementation, one needs to create

an environment for it, namely other agents on the bus. This is

a non-trivial, tedious task. However with a monitor, an
environment can be created without writing any

implementation code. It does this by specifying which input

sequences to the agent are correct according to the interface

specification. Namely, one would model check the single

agent by conditioning all the properties to be verified, with

“if the interfacing agents have been correct so far according

to the monitor”. For example, if p is the property to be model

checked, and agents i and j form the environment, the

property to be model checked is “correcti � correct j _ p”

where correcti and correct j correspond to the output signals

of the monitor for i and j. The monitor and the condition in
the model checking properties correctly constrain the inputs

to the agent. This is an example of assume guarantee

reasoning where the specification for one (or more) agent(s)

is used to verify the implementation of another agent. This

use of the monitor is very similar to what is described in [1].

As an execution example of this technique, Govindaraju used

our PCI monitor to successfully verify a PCI controller

implementation [10].

C. For Simulating Complete System Implementations:

In a testing environment, an interface monitor, if written in
the language of the implementation, can be directly

connected to a design and flag errors and correctly assign

blame to the erring module in a system-level simulation.

Since monitors can be written in synthesizable RTL, they can

be used for tools that need cycle-level models instead of

event-based simulation models such as formal verifiers or

emulators.

D. Construction of a Monitor Specification

A further advantage of the monitor-style specification is that

they are very easy to construct. First, it is noted that a

specification is a list of rules. In particular, the official PCI
specification is written that way. Thus, it is natural for the

monitor to check for each of these rules independently. For

clarity, these rules will be called constraints here. Here are

some examples of PCI constraints, “trdy# cannot be driven

until devsel# is asserted” “only when irdy# is asserted frame3

is deasserted”. Only the monitor is written by the

specification writer. The agents in the figure are to be later

implemented by someone else. As logic formulas, these can

be written as follows; trdy � devsel (if trdy is true, then

devsel must be true) and prev_frame_ � frame �irdy (if

frame is true in the last cycle,then it must either be true in

this cycle or if it’s not, irdy must be true). The goal was to
keep the constraints as simple as possible to prevent the

overall specification from getting complicated. When

specifying PCI, it was found that the following constraint

characteristics can be kept true, and the specification can still

fully describe the protocol.

1. No CTL or LTL For the monitor specification, all of the

PCI constraints can be written without using any CTL [6]

constructs nor is knowledge of any linear time temporal logic

(LTL) specifically needed. This is the basis for the claim that

the specification style can be used with HDLs such as

Verilog. In Verilog, the above example becomes,
(where correcti is initialized to 1)

If trdy && ! devsel) {correct=0};

2. No complex state machines only two types of very simple

state machines were needed as auxiliary variables for the PCI

constraints. One type is a event-recoding state machine

which becomes true when a set event happens and remains

true until a reset event occurs and is false otherwise. This is

needed, for example, to “remember” whether the transaction

is a read or a write. The second type is a counting state

machine which starts to count after a set event, and stops
counting either when a reset event happens or a limit is

reached, whichever comes first.

3. Small time frames

With the help of the state machines described above, all of

the constraints can be written with less than three time

frames. Thus, the most complicated PCI constraint looks

This property keeps the constraints compact. From a

preliminary inspection of a more complex protocol than PCI,

such as Intel’s Merced bus, properties 1 and 3 seem to hold

for other protocols. Thus, a specification can be a list of
compact constraints which are easy to maintain. And to

construct the desired monitor, the constraints are directly

used to determine the correcti’s. Assuming that each

constraint constrains the behavior of only one agent, the

constraints are grouped by the agent which they constrain.

When the agent output signals make all the constraints of one

agent true, the corresponding correcti is true; otherwise, the

correcti is false. Thus, correcti is a conjunction of all the

constraints specifying the behavior of agent i. The following

is the assignment statement for correcti, where constraint j i

then correcti = true, else correcti = false. Therefore, the

monitor is a list of propositional formulas, auxiliary state
variable assignments, and correcti assignments. There is no

conversion of this to a state machine; this is precisely the

code for the monitor.

