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Abstract: Meaningful Patterns, or Motifs, often exist in 

large volumes of biological data. They are theorized to be 

highly significant elements in protein and DNA and are 

important for understanding the function of particular 

sequences. Identifying these motifs can help researchers to 

accurately target human disease with therapeutic drugs and 

understand gene function more precisely. There have been 

several identified problems, but this project looks primarily 

at parallel optimizations for the planted (l, d)-motif 

problem. In PMS we are given two integer l and d and n 

biological sequences. We want to find out all sequences of 

length l that appears in each of the input sequences with at 

most d mismatches. Being able to quickly identify these 

motifs is difficult due to the nature of the problem. The 

number of comparisons we need to make grows 

exponentially with d. It quickly becomes impractical to 

attempt sequential computation of the motif search as d 

grows. This project demonstrates the practical application 

of parallel techniques using openMP and openMPI with 

cluster computer which shows the degree to which 

performance can be improved through loop and block-level 

parallelization. It also discusses how these techniques can 

be applied to other similar problems in the field of 

bioinformatics. 
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I. INTRODUCTION 
The detection of similarities between different DNA 

sequences can provide insight into the function and 

significance of those sequences. One category of such 

similarities is the motif, a pattern that recurs across many 

DNA sequences. Motifs can represent meaningful structures 

such as transcription factor binding sites [1]. Therefore, it is 

of interest to biologists and researchers to be able to quickly 

and accurately detect motifs in large collections of genetic 

data. The Planted Motif Search problem has been formalized 

to abstract the process of finding motifs. Planted-(l, d) Motif 

Search Problem Definition. The required inputs are: a list of 
n sequences, each of length m, to be examined for motifs; an 

integer l, which specifies the length of the desired motif; and 

an integer d specifying the Hamming distance permitted for 

any instance of the motif in an input sequence. Numerous 

algorithms have been proposed and implemented to detect 

motifs in DNA sequences using a variety of approaches [2]. 

Algorithms such as MEME [3] And Profile Branching [4] 

take a profile-based approach.  They predict the positions at 

which the motif appears in each sequence.  Other algorithms, 

like PairMotif [5], MITRA [6], and PROJECTION [7],  

 

predict the motif itself and are known as pattern based 

algorithms. This paper will present a number of proposed 

optimizations that can be applied in many approaches to the 

Planted Motif Search problem. While these modifications 

will not alter the asymptotic runtime of a given algorithm, 
they can provide considerable practical improvement over 

naïve approaches. The PMS algorithm and proposed 

improvements developed by developed by Rajasekaran et al. 

are the framework on which these implementations are 

based. The optimizations are applied incrementally, so the 

improvements can be analyzed separately.  A large number 

of sequential algorithms have been proposed for PMP. These 

algorithms can be categorized into approximation 

algorithms, and exact algorithms. In approximation 

algorithms, the planted motif may not be extracted, whereas 

in exact algorithms, the planted motif can always be 
extracted. The approximation algorithms employ heuristic 

techniques such as graph [8], Expectation Maximization [9], 

[11], Gibbs Sampling [10], divide and conquer [12], 

combinatorial approaches [13], statistical methods [14], and 

profile-based search [15]. The exact algorithms employ 

exhaustive search techniques such as suffix tree [16], 

dynamic programming [17], hashing [19],  and sorting [20]. 

As a result of exhaustive search, some of the earlier exact 

algorithms are impractical in terms of time or memory 

requirements for the challenging instances of PMP. The 

recent exact algorithms voting [19], PMSprune [21], PMS5 

[22], HEPPMSprune [23], PMS6 [24], Modified Voting [26], 
CVoting [25] and qPMS7 [27] propose practical solutions for 

the challenging instances. In this paper, we present a simple 

method for parallelizing the recent efficient motif finding 

algorithm, PMS. We implement the parallel algorithm on a 

multi-core architecture using openMP and openMPI. The 

experimental results show that, the scalability of our parallel 

implementation is approximately optimal and independent of 

number of processors or the motif length. Also the scalability 

increases with the number of processors and number of 

cores. 

 
II. PMS ALGORITHM 

In this section, we briefly describe PMS algorithm, which 

has great properties in terms of space and running time 

complexities. For any l-mer u we define its d-neighborhood 

as the set of l-mers v for which Hd(u, v) ≤ d. For any set of l-

mers T we define the common d-neighborhood of T as the 

intersection of the d-neighborhoods of all l-mers in T. To 

compute common neighborhoods, a natural approach is to 

traverse the tree of all possible l-mers and identify the 

common neighbors. A node at depth k, which represents a k-
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mer, is not explored deeper if certain pruning conditions are 

met. Thus, the better the pruning conditions are, the faster 

will be the algorithm. 

Algorithm 1. GenerateNeighborhood(T, d) 
for (i = 1..|T|) do ri:= d; 

GenerateNeighborhood(T, r, 1) 

GenerateNeighborhood(T, r, p) 

 if (p ≤ l) then 

  if (not prune(T, r)) then 

   for α  ϵ ∑  do 

     xp := α  

       for (i = 1..|T|) do 

          T'i := Ti[2..|S|] 

           r'i := ri; 

           if (Ti[0] ≠ α) then r'i:=r'i-1; 

       end for 
     GenerateNeighborhood(T ', r', p + 1) 

   end for 

  end if 

else 

    report l-mer x 

end if 

Algorithm 2. PMS(T, d) 

    for (i = 1..n) do Ri= {u|u ϵ Si} 

    stack = {} 

   GenerateMotifs(1, stack, R) 

GenerateMotifs(p, stack, R) 
    for (u ϵ Rp) do 

        stack.push(u) 

        R' :=filter(R, stack) 

        if (R'.size > 0) then 

           if (ThresholdCondition) then 

N :=GenerateNeighborhood(stack, d) 

for (m ϵ N) do 

   if (isMotif(m, R')) then output m; 

          else 

GenerateMotifs(p + 1, R') 

     stack.pop() 
end for 

 

Fig. 1. PMS Algorithm 

 

 

III. HPC APPROACH 

We have created the HPC cluster of 5 computers; each 

computer is having the same configuration. Each computer 

has Intel core i3-2130 CPU @3.40 GHz, 3072 KB cache and 

running Ubuntu 12.04 OS and connected over Ethernet LAN. 

 

A. Method to create openMPI Cluster 
To be able to run a parallel computation on a network of 

computers via openMPI, one has to be able to log in to any of 

the machines without having to enter a password. This can be 

achieved easily using secure shell key authentication. We 

assume that the user want to run parallel jobs on a network of 

machines called master, slave1, slave2 etc. Master is the 

logging node, i.e. master is likely to be open to the Internet or 

to other machines. 

 

 Giving each node a static ip will make things 

simpler. To make configuration easier, change 

every node's /etc/hosts file. 
127.0.0.1localhost 

192.168.1.100master 

192.168.1.101slave1 

192.168.1.102 slave2 

 Installing and configuring a shared file system 

(master) 

o install nfs server on master node 

sudo apt-get install -y nfs-kernel-server 

o set up a shared directory on master 

sudo mkdir /share 

echo /share *(rw,sync) | sudo tee –a 
/etc/exports 

sudo /etc/init.d/nfs-kernel-server restart 

 Installing and configuring a shared file system 

(slave) 

a.    install nfs on slave nodes 

       sudo apt-get install -y nfs-common 

b.    mount the shared directory from slave nodes.  

       sudo mount master:/share /share 

 Create a user (all nodes) 

Add a user that will run MPI programs. This user 

has to have the same name on all the nodes, the 

same UID, and has to have his home diretory as 
/share. 

sudo adduser --home /share/mpiuser --UID 999 

mpiuser 

sudo chown mpiuser /share 

 Install SSH server(all nodes) 

  sudo aptitude install -y openssh-server 

 Set up public key authentication(master) 

su - mpiuser  

ssh-keygen -t rsa 

cd .ssh 

cat id_rsa.pub >> authorized_keys 
chmod 700 ~/.ssh 

chmod 600 ~/.ssh/authorized_keys 

 Installing software(all nodes) 

sudo apt-get install -y gcc g++ build-essential 

sudo apt-get install libopenmpi-dev  openmpi-bin 

openmpi-common openmpi-doc 

 

B. Parallel Implementation 

To parallelize PMS using openMP and openMPI we create m 

- l + 1 sub problems, one for each l-mer in the first string. 

The first string in each sub problem is an l-mer of the 
original first string and the rest of the strings are the same as 

in the original input. The processor with rank 0 is a master 

and the others are slaves. The master spawns a separate slave 

thread to avoid using one processor just for scheduling. The 

master reads the input and broadcasts it to all slaves. Then 

each slave requests a sub problem from the master, solves it 

and repeats. The master loops until all jobs have been 

requested and all slaves have been notified that no more jobs 

are available. At the end, all processors send their motifs to 
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the master which outputs them. As each machine having 2 

cores we set OMP_NUM_THREADS = 2 and using loop 

level and block level parallelism in slave nodes we increases 

the performance. The algorithm for master slave is shown 
below. 

Master: 

spawn(Slave0) 

read(input) 

broadcast(input) 

while (job < nJobs + N) 

recv(w, JobRequest) 

send(w, job++) 

join(slave0) 

for i = 1 to N-1 

recv(i, motifs) 

Slave: 
broadcast(input) 

do 

send(0, JobRequest) 

recv(0, job) 

          if (job < nJobs) 

process(job) 

while (job < nJobs) 

send(0, motifs) 

 

Fig. 2. Parallel PMS algorithm 

 
IV. RESULTS AND DISCUSSION 

In this section, we present our experiments for motif search 

on different sets of databases. The PMS is implemented on a 

HPC cluster of 5 computers. Each computer has Intel core i3-

2130 CPU @3.40 GHz and 3072 KB cache and running 

12.04 Ubuntu OS. The program is coded in C++ language 

with openMP and openMPI directives. 

 

A. Experimental result on Simulated Data Set 

The input sequences are generated by using simulated data 

sets with parameters t =20sequences and m = 600 characters, 
where the characters are A, C, G, T. Each (l, d) input instance 

dataset is generated as follows: We generate random strings 

with length (m - l) each, where the characters appear 

randomly with equal probability. Then we generate randomly 

an l length string M and plant a copy of it in each sequence at 

random position after mutating it with at most d random 

mutations. 

           C 

Instances 

1 2 3 4 5 

(15,5) 33.48 16.32 15.5 13.82 12.4 

(21,7) 20.6 13 12 11.32 10.53 

(23,8) 92.6 57.5 51.6 47.4 45 

(26,9) 171 94 89 80 75 

(28,10) 402 280 250 230 198 

(30,11) 1811 1300 1200 1030 880 

TABLE I: Running time in seconds for different challenging 

instances. C is the number of computers in HPC. 

 

B. Experimental result on Real Data Set 

We test PMS on a set of real biological data which are used 

in the literature [26]. The data for this set contains the 

upstream DNA regions of a set of genes from different 

species. 

Gene Family Instance (l, d) Motif detected 

Insulin (11,1) CCTCAGCCCCT 

CTAGCCATCTG 
CTTCAGCCCCC 

GCCATCTGCCG 

GCCTCAGCCCC 

GGCCATCTGCC 

TAGCCATCTGC 

Growth 

Hormone 

(10,2) ATGTATAAAA 

TATAAAAAGA 

c-fos (11,1) ACAGGATGTAC 

CCATATTAGGA 

PDR3 (10,1) TTCCGCGGAA 

Histone H1 (11,1) AAACAAAAGTG 

AGACAAAAGTT 

TAAACAAAAGT 

ECB (10,1) AAAAATTATT 

AGTAAAAAAA 

PHO4 (13,2) AAAAATAGAAGTG 

AAAATAAATGTGA 
AAAGAAATTTATC 

AATAAAGCAAGAA 

AATGCAATAAAAA 

AATGCGATAAAAA 

ATAAAGCAAGAAA 

c-myc (10,1) AAGAAAAAAA 

AGAAAAAAAA 

GAAAAAAAAA 

MCB (9,1) AAGAATAAA 

ATAAAAGAA 

TTCTTTCTT 

TTCTTTGTT 

TABLE II: Motifs Detected in real biological dataset. 

CONCLUSION 
In this paper, we have presented a simple scalable and 

efficient parallel openMP and openMPI implementation for 

PMS algorithm using cluster computer.  Also we have 

presented the method for creating HPC cluster. The 

efficiency of the algorithm is validated by testing it on both 

simulated as well as real biological databases. The result 

proved that the speed up increases with the increase of 

cluster computers.  
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