
International Journal For Technological Research In Engineering

Volume 2, Issue 7, March-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 1316

HIGH PERFORMANCE COMPUTING APPROACH FOR MOTIF

SEARCH USING OPENMP AND OPENMPI

Prafulla K. Mendhe
1
, Deepti Shrimankar

2

Department of Computer Science & Engineering, VNIT, Nagpur, India

Abstract: Meaningful Patterns, or Motifs, often exist in

large volumes of biological data. They are theorized to be

highly significant elements in protein and DNA and are

important for understanding the function of particular

sequences. Identifying these motifs can help researchers to

accurately target human disease with therapeutic drugs and

understand gene function more precisely. There have been

several identified problems, but this project looks primarily

at parallel optimizations for the planted (l, d)-motif

problem. In PMS we are given two integer l and d and n

biological sequences. We want to find out all sequences of

length l that appears in each of the input sequences with at

most d mismatches. Being able to quickly identify these

motifs is difficult due to the nature of the problem. The

number of comparisons we need to make grows

exponentially with d. It quickly becomes impractical to

attempt sequential computation of the motif search as d

grows. This project demonstrates the practical application

of parallel techniques using openMP and openMPI with

cluster computer which shows the degree to which

performance can be improved through loop and block-level

parallelization. It also discusses how these techniques can

be applied to other similar problems in the field of

bioinformatics.

Keywords: motif search, openMP, openMPI, high

performance computing HPC, cluster, PMS algorithm.

I. INTRODUCTION
The detection of similarities between different DNA

sequences can provide insight into the function and

significance of those sequences. One category of such

similarities is the motif, a pattern that recurs across many

DNA sequences. Motifs can represent meaningful structures

such as transcription factor binding sites [1]. Therefore, it is

of interest to biologists and researchers to be able to quickly

and accurately detect motifs in large collections of genetic

data. The Planted Motif Search problem has been formalized

to abstract the process of finding motifs. Planted-(l, d) Motif

Search Problem Definition. The required inputs are: a list of
n sequences, each of length m, to be examined for motifs; an

integer l, which specifies the length of the desired motif; and

an integer d specifying the Hamming distance permitted for

any instance of the motif in an input sequence. Numerous

algorithms have been proposed and implemented to detect

motifs in DNA sequences using a variety of approaches [2].

Algorithms such as MEME [3] And Profile Branching [4]

take a profile-based approach. They predict the positions at

which the motif appears in each sequence. Other algorithms,

like PairMotif [5], MITRA [6], and PROJECTION [7],

predict the motif itself and are known as pattern based

algorithms. This paper will present a number of proposed

optimizations that can be applied in many approaches to the

Planted Motif Search problem. While these modifications

will not alter the asymptotic runtime of a given algorithm,
they can provide considerable practical improvement over

naïve approaches. The PMS algorithm and proposed

improvements developed by developed by Rajasekaran et al.

are the framework on which these implementations are

based. The optimizations are applied incrementally, so the

improvements can be analyzed separately. A large number

of sequential algorithms have been proposed for PMP. These

algorithms can be categorized into approximation

algorithms, and exact algorithms. In approximation

algorithms, the planted motif may not be extracted, whereas

in exact algorithms, the planted motif can always be
extracted. The approximation algorithms employ heuristic

techniques such as graph [8], Expectation Maximization [9],

[11], Gibbs Sampling [10], divide and conquer [12],

combinatorial approaches [13], statistical methods [14], and

profile-based search [15]. The exact algorithms employ

exhaustive search techniques such as suffix tree [16],

dynamic programming [17], hashing [19], and sorting [20].

As a result of exhaustive search, some of the earlier exact

algorithms are impractical in terms of time or memory

requirements for the challenging instances of PMP. The

recent exact algorithms voting [19], PMSprune [21], PMS5

[22], HEPPMSprune [23], PMS6 [24], Modified Voting [26],
CVoting [25] and qPMS7 [27] propose practical solutions for

the challenging instances. In this paper, we present a simple

method for parallelizing the recent efficient motif finding

algorithm, PMS. We implement the parallel algorithm on a

multi-core architecture using openMP and openMPI. The

experimental results show that, the scalability of our parallel

implementation is approximately optimal and independent of

number of processors or the motif length. Also the scalability

increases with the number of processors and number of

cores.

II. PMS ALGORITHM

In this section, we briefly describe PMS algorithm, which

has great properties in terms of space and running time

complexities. For any l-mer u we define its d-neighborhood

as the set of l-mers v for which Hd(u, v) ≤ d. For any set of l-

mers T we define the common d-neighborhood of T as the

intersection of the d-neighborhoods of all l-mers in T. To

compute common neighborhoods, a natural approach is to

traverse the tree of all possible l-mers and identify the

common neighbors. A node at depth k, which represents a k-

International Journal For Technological Research In Engineering

Volume 2, Issue 7, March-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 1317

mer, is not explored deeper if certain pruning conditions are

met. Thus, the better the pruning conditions are, the faster

will be the algorithm.

Algorithm 1. GenerateNeighborhood(T, d)
for (i = 1..|T|) do ri:= d;

GenerateNeighborhood(T, r, 1)

GenerateNeighborhood(T, r, p)

 if (p ≤ l) then

 if (not prune(T, r)) then

 for α ϵ ∑ do

 xp := α

 for (i = 1..|T|) do

 T'i := Ti[2..|S|]

 r'i := ri;

 if (Ti[0] ≠ α) then r'i:=r'i-1;

 end for
 GenerateNeighborhood(T ', r', p + 1)

 end for

 end if

else

 report l-mer x

end if

Algorithm 2. PMS(T, d)

 for (i = 1..n) do Ri= {u|u ϵ Si}

 stack = {}

 GenerateMotifs(1, stack, R)

GenerateMotifs(p, stack, R)
 for (u ϵ Rp) do

 stack.push(u)

 R' :=filter(R, stack)

 if (R'.size > 0) then

 if (ThresholdCondition) then

N :=GenerateNeighborhood(stack, d)

for (m ϵ N) do

 if (isMotif(m, R')) then output m;

 else

GenerateMotifs(p + 1, R')

 stack.pop()
end for

Fig. 1. PMS Algorithm

III. HPC APPROACH

We have created the HPC cluster of 5 computers; each

computer is having the same configuration. Each computer

has Intel core i3-2130 CPU @3.40 GHz, 3072 KB cache and

running Ubuntu 12.04 OS and connected over Ethernet LAN.

A. Method to create openMPI Cluster
To be able to run a parallel computation on a network of

computers via openMPI, one has to be able to log in to any of

the machines without having to enter a password. This can be

achieved easily using secure shell key authentication. We

assume that the user want to run parallel jobs on a network of

machines called master, slave1, slave2 etc. Master is the

logging node, i.e. master is likely to be open to the Internet or

to other machines.

 Giving each node a static ip will make things

simpler. To make configuration easier, change

every node's /etc/hosts file.
127.0.0.1localhost

192.168.1.100master

192.168.1.101slave1

192.168.1.102 slave2

 Installing and configuring a shared file system

(master)

o install nfs server on master node

sudo apt-get install -y nfs-kernel-server

o set up a shared directory on master

sudo mkdir /share

echo /share *(rw,sync) | sudo tee –a
/etc/exports

sudo /etc/init.d/nfs-kernel-server restart

 Installing and configuring a shared file system

(slave)

a. install nfs on slave nodes

 sudo apt-get install -y nfs-common

b. mount the shared directory from slave nodes.

 sudo mount master:/share /share

 Create a user (all nodes)

Add a user that will run MPI programs. This user

has to have the same name on all the nodes, the

same UID, and has to have his home diretory as
/share.

sudo adduser --home /share/mpiuser --UID 999

mpiuser

sudo chown mpiuser /share

 Install SSH server(all nodes)

 sudo aptitude install -y openssh-server

 Set up public key authentication(master)

su - mpiuser

ssh-keygen -t rsa

cd .ssh

cat id_rsa.pub >> authorized_keys
chmod 700 ~/.ssh

chmod 600 ~/.ssh/authorized_keys

 Installing software(all nodes)

sudo apt-get install -y gcc g++ build-essential

sudo apt-get install libopenmpi-dev openmpi-bin

openmpi-common openmpi-doc

B. Parallel Implementation

To parallelize PMS using openMP and openMPI we create m

- l + 1 sub problems, one for each l-mer in the first string.

The first string in each sub problem is an l-mer of the
original first string and the rest of the strings are the same as

in the original input. The processor with rank 0 is a master

and the others are slaves. The master spawns a separate slave

thread to avoid using one processor just for scheduling. The

master reads the input and broadcasts it to all slaves. Then

each slave requests a sub problem from the master, solves it

and repeats. The master loops until all jobs have been

requested and all slaves have been notified that no more jobs

are available. At the end, all processors send their motifs to

International Journal For Technological Research In Engineering

Volume 2, Issue 7, March-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 1318

the master which outputs them. As each machine having 2

cores we set OMP_NUM_THREADS = 2 and using loop

level and block level parallelism in slave nodes we increases

the performance. The algorithm for master slave is shown
below.

Master:

spawn(Slave0)

read(input)

broadcast(input)

while (job < nJobs + N)

recv(w, JobRequest)

send(w, job++)

join(slave0)

for i = 1 to N-1

recv(i, motifs)

Slave:
broadcast(input)

do

send(0, JobRequest)

recv(0, job)

 if (job < nJobs)

process(job)

while (job < nJobs)

send(0, motifs)

Fig. 2. Parallel PMS algorithm

IV. RESULTS AND DISCUSSION

In this section, we present our experiments for motif search

on different sets of databases. The PMS is implemented on a

HPC cluster of 5 computers. Each computer has Intel core i3-

2130 CPU @3.40 GHz and 3072 KB cache and running

12.04 Ubuntu OS. The program is coded in C++ language

with openMP and openMPI directives.

A. Experimental result on Simulated Data Set

The input sequences are generated by using simulated data

sets with parameters t =20sequences and m = 600 characters,
where the characters are A, C, G, T. Each (l, d) input instance

dataset is generated as follows: We generate random strings

with length (m - l) each, where the characters appear

randomly with equal probability. Then we generate randomly

an l length string M and plant a copy of it in each sequence at

random position after mutating it with at most d random

mutations.

 C

Instances

1 2 3 4 5

(15,5) 33.48 16.32 15.5 13.82 12.4

(21,7) 20.6 13 12 11.32 10.53

(23,8) 92.6 57.5 51.6 47.4 45

(26,9) 171 94 89 80 75

(28,10) 402 280 250 230 198

(30,11) 1811 1300 1200 1030 880

TABLE I: Running time in seconds for different challenging

instances. C is the number of computers in HPC.

B. Experimental result on Real Data Set

We test PMS on a set of real biological data which are used

in the literature [26]. The data for this set contains the

upstream DNA regions of a set of genes from different

species.

Gene Family Instance (l, d) Motif detected

Insulin (11,1) CCTCAGCCCCT

CTAGCCATCTG
CTTCAGCCCCC

GCCATCTGCCG

GCCTCAGCCCC

GGCCATCTGCC

TAGCCATCTGC

Growth

Hormone

(10,2) ATGTATAAAA

TATAAAAAGA

c-fos (11,1) ACAGGATGTAC

CCATATTAGGA

PDR3 (10,1) TTCCGCGGAA

Histone H1 (11,1) AAACAAAAGTG

AGACAAAAGTT

TAAACAAAAGT

ECB (10,1) AAAAATTATT

AGTAAAAAAA

PHO4 (13,2) AAAAATAGAAGTG

AAAATAAATGTGA
AAAGAAATTTATC

AATAAAGCAAGAA

AATGCAATAAAAA

AATGCGATAAAAA

ATAAAGCAAGAAA

c-myc (10,1) AAGAAAAAAA

AGAAAAAAAA

GAAAAAAAAA

MCB (9,1) AAGAATAAA

ATAAAAGAA

TTCTTTCTT

TTCTTTGTT

TABLE II: Motifs Detected in real biological dataset.

CONCLUSION
In this paper, we have presented a simple scalable and

efficient parallel openMP and openMPI implementation for

PMS algorithm using cluster computer. Also we have

presented the method for creating HPC cluster. The

efficiency of the algorithm is validated by testing it on both

simulated as well as real biological databases. The result

proved that the speed up increases with the increase of

cluster computers.

REFERENCES

[1] Zambelli, F., Pesole, G., Pavesi, G.: Motif

Discovery and Transcription Factor Binding Sites
Before and After the Next-Generation Sequencing

Era. Briefings in Bioinformatics Vol. 14 (2013)

225-237

[2] Das, M., Dai, H.-K.: A Survey of DNA Motif

Finding Algorithms. BMC Bioinformatics, Vol. 8

Suppl. 7. (2007) S21

[3] Bailey, T.L., Elkan, C.: Fitting a Mixture Model by

Expectation Maximization to Discover Motifs in

International Journal For Technological Research In Engineering

Volume 2, Issue 7, March-2015 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2015.All rights reserved. 1319

Biopolymers. Proceedings of the 2nd International

Conference on Intelligent Systems for Molecular

Biology (1994) 28-36

[4] Price, A., Ramabhadran, S., Pevzner, P.A.: Finding
Subtle Motifs by Branching from Sample Strings.

Bioinformatics Vol. 1 (2003) 1-7

[5] Yu, Q., Huo, H., Zhang, Y., Guo, H.: PairMotif: A

New Pattern-Driven Algorithm for Planted (l,d)

DNA Motif Search. Public Library of Science Vol.

7 Issue 10 (2012) Special Section 1-10

[6] Eskin, E., Pevzner, P.: Finding Composite

Regulatory Patterns in DNA Sequences.

Bioinformatics S1 (2002) 354-363

[7] Buhler, J., Tompa, M.: Finding Motifs Using

Random Projections. Proceedings of the 5th Annual

Conference on Computational Molecular Biology
(RECOMB) (2001)

[8] P. A. Pevzner, S.-H. Sze et al., “Combinatorial

approaches to finding subtle signals in dna

sequences.” in ISMB, vol. 8, 2000, pp. 269–278.

[9] C. E. Lawrence and A. A. Reilly, “An expectation

maximization (em) algorithm for the identification

and characterization of common sites in unaligned

biopolymer sequences,” Proteins: Structure,

Function, and Bioinformatics, vol. 7, no. 1, pp. 41–

51, 1990.

[10] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S.
Liu, A. F. Neuwald, and J. C. Wootton, “Detecting

subtle sequence signals: a gibbs sampling strategy

for multiple alignment,” science, vol. 262, no. 5131,

pp. 208–214, 1993.

[11] T. L. Bailey and C. Elkan, “Unsupervised learning

of multiple motifs in biopolymers using expectation

maximization,” Machine learning, vol. 21, no. 1-2,

pp. 51–80, 1995.

[12] Y. M. Fraenkel, Y. Mandel, D. Friedberg, and H.

Margalit, “Identification of common motifs in

unaligned dna sequences: application to Escherichia
coli lrp regulon,” Computer applications in the

biosciences: CABIOS, vol. 11, no. 4, pp. 379–387,

1995.

[13] I. Rigoutsos and A. Floratos, “Combinatorial

pattern discovery in biological sequences: The

teiresias algorithm.” Bioinformatics, vol. 14, no. 1,

pp. 55–67, 1998.

[14] M. Gelfand, E. Koonin, and A. Mironov,

“Prediction of transcription regulatory sites in

archaea by a comparative genomic approach,”

Nucleic Acids Research, vol. 28, no. 3, pp. 695–705,

2000.
[15] C.-W. Huang, W.-S. Lee, and S.-Y. Hsieh, “An

improved heuristic algorithm for finding motif

signals in dna sequences,” IEEE/ACM Transactions

on Computational Biology and Bioinformatics

(TCBB), vol. 8, no. 4, pp. 959–975, 2011.

[16] M.-F. Sagot, “Spelling approximate repeated or

common motifs using a suffix tree,” in LATIN’98:

Theoretical Informatics. Springer, 1998, pp. 374–

390.

[17] M. Blanchette, B. Schwikowski, and M. Tompa,

“Algorithms for phylogenetic footprinting,” Journal

of Computational Biology, vol. 9, no. 2, pp. 211–
223, 2002.

[18] A. M. Carvalho, A. T. Freitas, A. L. Oliveira, M.-F.

Sagot et al.,“A highly scalable algorithm for the

extraction of cis-regulatory regions.” in APBC,

2005, pp. 273–282.

[19] F. Y. Chin and H. C. Leung, “Voting algorithms for

discovering long motifs.” in APBC, 2005, pp. 261–

271.

[20] S. Rajasekaran, S. Balla, and C.-H. Huang, “Exact

algorithms for planted motif problems,” Journal of

Computational Biology, vol. 12, no. 8, pp. 1117–

1128, 2005.
[21] J. Davila, S. Balla, and S. Rajasekaran, “Fast and

practical algorithms for planted (l, d) motif search,”

Computational Biology and Bioinformatics,

IEEE/ACM Transactions on, vol. 4, no. 4, pp. 544–

552, 2007.

[22] H. Dinh, S. Rajasekaran, and V. K. Kundeti, “Pms5:

an efficient exact algorithm for the (, d)-motif

finding problem,” BMC bioinformatics, vol. 12, no.

1, p. 410, 2011.

[23] M. M. Abbas, M. Abouelhoda, and H. M. Bahig, “A

hybrid method for the exact planted (l, d) motif
finding problem and its parallelization,” BMC

bioinformatics, vol. 13, no. Suppl 17, p. S10, 2012.

[24] S. Bandyopadhyay, S. Sahni, and S. Rajasekaran,

“Pms6: A fast algorithm for motif discovery,” in

Computational Advances in Bio and Medical

Sciences (ICCABS), 2012 IEEE 2nd International

Conference on. IEEE, 2012, pp. 1–6.

[25] Y. Xu, J. Yang, Y. Zhao, and Y. Shang, “An

improved voting algorithm for planted (l, d) motif

search,” Information Sciences, vol. 237, pp. 305–

312, 2013.
[26] M. M. Abbass and H. M. Bahig, “An efficient

algorithm to identify dna motifs,” Mathematics in

Computer Science, vol. 7, no. 4, pp. 387–399, 2013.

[27] H. Dinh, S. Rajasekaran, and J. Davila, “qpms7: A

fast algorithm for finding (l, d)-motifs in dna and

protein sequences,” PloS one, vol. 7, no. 7, p.

e41425, 2012.

[28] Marius Nicolae and Sanguthevar Rajasekaran,

“Efficient sequential and parallel algorithms for

planted motif search” BMC Bioinformatics 2014.

[29] Mostafa M.Abbas, Qutaibah M. Malluhi, P.

Balakrishnan, “Scalable Multi-Core Implementation
for Motif Finding Problems” 13th International

Symposium on Parallel and Distributed Computing

2014.

[30] H. Faheem, “Accelerating motif finding problem

using grid computing with enhanced brute force,” in

Advanced Communication Technology (ICACT),

2010 The 12th International Conference on, vol. 1.

IEEE, 2010, pp. 197–202.

