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Abstract: In contemporary world there is a great need for 

low power consumption circuit design, which is very 

compatible with emphasis on high performance in DIP 

(Digital Image Processing) system. In this paper the 

proposed method presents a parallel single-rail self-timed 

adder which uses recursive method for performing multi bit 

binary addition and multipication. This design obtains good 

performance without any special speedup circuitry. A 

practical enactment is provided along with a completion 

detection unit. The implementation is extensive and does 

not have any practical limitations of high fan-outs. A high 

fan-in gate is essential even though this is unavoidable for 

asynchronous logic and is managed by connecting the 

transistors in parallel. Integer addition is one of the most 

significant operations in digital computer systems because 

the performance of processors is outstandingly influenced 

by the speed of their adders. PASTA design uses 

multiplexers along with half adders. The absence of clock 

generation and distribution units also results in less power 

dissipation. Clock less chips offer power efficiency, 

robustness and reliability. A multiplier is designed and 

synthesized using existing adder and proposed adder to 

show the superiority of the proposed approach. 
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I. INTRODUCTION 

Integer addition is one of the most essential operations in 

digital computer systems. In addition to explicit arithmetic 

(such as addition, subtraction, multiplication, and division) 

performed in a program, additions are performed to 

increment program counters and calculate effective 

addresses. Adders are considered to be the heart of 

computational circuits and addition has been the core for 

many complex arithmetic circuits. Most of the adders have 

been designed for asynchronous circuits as asynchronous 

circuits do not assume any quantization of time and some still 

use synchronous circuits as well. Thus, having free from 

various problems of clocked (synchronous) circuits. Here we 

have generated the design of binary adders and concentrated 

on asynchronous self-timed adders. Self timed relate the logic 

circuits that depend on timing assumptions for the accurate 

operation of the circuit. Self-timed adders have the capacity 

to run faster averaged for dynamic data, that early completion 

sensing can avoid delay mechanism of synchronous circuits. 

Adaptive signal processing has developed into a self-

contained field that finds wide range of real-life applications 

such as adaptive equalization, noise and echo cancellation,  

 

linear predictive coding, and adaptive beam-forming. 

Adaptive signal processing algorithms are characterized by 

their recursive operations for realizing algorithmic self-

designing/adaptation. To realize high-throughput VLSI 

implementation of adaptive signal processing algorithms, 

architecture-level technique pipelining is typically used. 

Pipelined adaptive signal processing systems are essentially 

subject to a trade-off between system throughput and signal 

processing performance, i.e., deeper pipelined adaptation 

feedback loop can realize higher throughput, but the delayed 

feedback will incur larger performance degradation. It should 

be pointed out that, for other recursive algorithms such as 

infinite impulse response (IIR) filtering and Viterbi 

algorithm, direct pipelining may simply ruin their 

functionality and appropriate algorithm-level modification is 

required for the use of pipelining. A pipelined adaptive 

signal processing algorithm implemented using the 

conventional synchronous pipeline typically has a fixed 

pipeline depth that is determined in the design phase to 

accommodate the highest run-time throughput requirement. 

Although it is possible to on-the-fly configure the pipeline 

depth of synchronous pipeline by selectively bypassing 

certain levels of registers, this is very inflexible and cannot 

realize fine-grain graceful configuration on the 

throughput/performance trade-offs. For example, consider an 

8-stage pipelined recursive adaptation loop in which the 

registers are almost evenly placed along the loop for 

maximizing the throughput. If we bypass one level of 

registers to realize a 7-stage pipeline, the delay of the critical 

path may double and the throughput will reduce almost by 

half.  Self-timed pipeline works in a different way from its 

synchronous counterpart. Without a common and discrete 

notion of time, self-timed pipeline relies on the handshake 

between components to perform the synchronization and 

communication. Each distinct data propagating through a self 

timed pipeline is conventionally called a token. The pipeline 

depth of a self-timed pipeline simply equals the number of 

tokens present in the pipeline at the same time. Hence, we 

can dynamically configure the pipeline depth by controlling 

the number of tokens present in the pipeline. This property of 

self-timed pipeline has been exploited in the design of a 

mixed synchronous-asynchronous FIR filter that can support 

variable latency (in terms of clock cycles) and power 

management of an embedded, single-issue processor. In 

pipelined adaptive signal processing systems, the pipeline 

depth of the adaptation feedback loops is the key to tune the 

inherent trade-off between throughput and signal processing 

performance. This directly motivates us to apply self-timed 
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pipeline for the implementation of adaptive signal processing 

systems to realize gracefully configurable 

throughput/performance trade-off. This can be leveraged to 

improve the overall system performance in many 

circumstances. For example, for adaptive signal processing 

systems with variable data rate, we can dynamically adjust 

the pipeline depth to the minimum allowable value according 

to the current data rate to realize the best signal processing 

performance. These Self-timed adders have the capacity to 

run faster than the conventional circuit design. This paper 

presents an asynchronous parallel self-timed adder (PASTA). 

This design uses half-adders (HAs) with the multiplexers 

requiring minimum interconnections. Thus, making way for 

many VLSI implementations. For independent carry chain 

blocks PASTA works in a parallel manner. There are four 

levels of minimization of power dissipation in CMOS based 

system designs: technology, circuit, architecture and 

algorithm. Generally choosing appropriate circuit design 

style 20% to 30 % power can be saved in circuit level. 

 

II. BACKGROUND 

Addition is the most common and often used arithmetic 

operation on microprocessor, digital signal processor, 

especially digital computers. Also, it serves as a building 

block for synthesis all other arithmetic operations. Therefore, 

regarding the efficient implementation of an arithmetic unit, 

the binary adder structures become a very critical hardware 

unit.  A carry-save adder is a type of digital adder, used in 

computer micro architecture to compute the sum of three or 

more n bit numbers in binary. It differs from other digital 

adders in that it outputs two numbers of the same dimensions 

as the inputs, one which is a sequence of partial sum bits and 

another which is a sequence of carry bits.  

Consider the sum: 12345678+87654322=100000000. Using basic 

arithmetic, calculate right to left, "8+2=0, carry 1", 

"7+2+1=0, carry 1", "6+3+1=0, carry 1", and so on to the end 

of the sum. Although, the last digit of the result at once, we 

cannot know the first digit until every digit in the calculation, 

passing the carry from each digit to the one on its left. Thus 

adding two n-digit numbers has to take a time proportional to 

n, even if the machinery is capable of performing many 

calculations simultaneously. The carry-save unit consists of n 

full adders, each of which computes a single sum and carry bit 

based solely on the corresponding bits of the three input 

numbers. Given the three n bit numbers a, b, and c, it 

produces a partial sum psi and a shift-carry sci: 

Psi = ai ⊕ bi ⊕ ci 

Sci =  (ai ˄bi) ˅ (ai ˄ ci ) ˅ (bi ˄ ci) 

The entire sum can then be computed by: 

 Shifting the carry sequence sc left by one place. 

 Appending a 0 to the front (most significant bit) of 

the partial sum sequence ps. 

 Using a ripple carry adder to add these two together 

and produce the resulting n + 1-bit value. 

Array Multiplier Array number is renowned thanks to its 

regular structure. Number circuit relies on add and shift rule. 

Every partial product is generated by the multiplication of the 

number with one number bit. The partial product is shifted 

per their bit orders then additional.  The addition will be 

performed with traditional carry save adder. First advantage 

of the array multiplier is that it has a regular structure. Since 

it is regular, it is easy to layout and has a small size. . A 

second advantage of the array multiplier is its ease of design 

for a pipelined architecture. 

 

III. DESIGN OF PASTA 

In this segment, the design and theory behind nourishment is 

presented. The adder initial accepts 2 input operands to 

perform [Fig.1.] additions for every bit. Subsequently, it 

iterates exploitation earlier generated carry and sums to 

perform half-additions repeatedly till all carry bits are 

consumed and settled at zero level. The general design of the 

adder is shown in Fig. 1. The choice input for two-input 

multiplexers corresponds to the Request handclasp signal 

and can be one zero to one transition denoted by SEL. can 

it’ll at the start choose the particular operands throughout 

SEL=0and will switch to feedback/carry methods for 

consequent iterations exploitation SEL=1. The feedback path 

from the HAs allows the multiple iterations to continue till 

the completion once all carry signals can assume zero values. 

 
Fig .1. General block diagram of PASTA 

3.1 State Diagrams 

In Fig. 3, 2 state diagrams are drawn for the initial section 

and therefore the repetitious section of the projected design. 

Every state is delineate by (Ci+1Si) pairwhereCi+1, Si 

represent do and add values, severally, from the ith bit adder 

block. Throughout the initial section, the circuit just works as 

a combinatory hour angle operational in elementary mode. 

It’s evident that because of the utilization of HAs rather than 

FAs, state (11) cannot seem. During the repetitious section 

(SEL=1), the feedback path through electronic device block 

is activated. The carry transitions (Ci) are allowed as again 

and again PRN to complete the formula. From the definition 

of elementary mode circuits, the current style cannot be 

thought-about as a elementary mode circuit because the 

input–outputs can undergo many transitions before 

manufacturing the ultimate output. It’s not a Muller circuit 

operating outside the basic mode either as internally; many 

transitions can occur, as shown within the state diagram. this 

can be analogous to cyclic consecutive circuits wherever gate 

delays are utilised to separate individual states. 

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Carry_%28arithmetic%29
http://en.wikipedia.org/wiki/Adder_%28electronics%29#Full_adder
http://en.wikipedia.org/wiki/Logical_shift
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Adder_%28electronics%29#Ripple_carry_adder
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Fig. 2. State diagrams for PASTA. (a) Initial phase. (b) 

Iterative phase 

3.2 Recursive Formula for Binary Addition 

Let si
j and Ci+1

j denote the sum and carry, respectively, for ith 

bit at the jth iteration. The initial condition (j =0) for addition 

is formulated as follows  

Si
0  = ai ⊕ bi 

C0
i+1

  = aibi                                                          [1] 

The jth iteration for the recursive addition is formulated by 

Si
j     = Sij-1⊕ Ci

j-1  ,0≤i<n                        [2] 

Cj
i+1   =Si

j-1Ci
j-1, 0≤i≤n.                               [3] 

The recursion is terminated at kth iteration when the 

following condition is met 

Cn
k + Cn-1

k +..............+C1
k = 0, 0≤k≤n.                       [4] 

Now, the correctness of the algorithmic formulation is 

inductively evidenced as follows. 

Theorem 1: The algorithmic formulation of (1)–(4) can turn 

out correct total for any range of bits and can terminate inside 

a finite time. 

Proof:  A tendency to prove the correctness of the 

algorithmic rule by induction on the specified range of 

iterations for finishing the addition (meeting the terminating 

condition). 

Basis: contemplate the quantity decisions that no carry 

propagation is needed, i.e., Ci
0 = zero for ∀i,i ∈[0..n]. The 

projected formulation can turn out the right result by a single-

bit computation time and terminate instantly as (4) is met. 

Induction: Assume that Ck
i+1≠0 for some ith bit at kth iteration. 

Let l be such somewhat that Ck
l+1 =1. We have a tendency to 

show that it'll be with success transmitted to next higher bit 

within the (k+1) th iteration. As shown within the state 

diagram, the kth iteration of lth bit state (Ck
l+1,Sl

k) and (l +1)th 

bit state Ck
l+2,S

k
l+1) can be in any of (0,0), (0,1),or(1,0) states. 

As Ck
l+1 =1, it implies that Sl

k =0. Hence, from (3), Cl+1
k+1 =0 

for any input condition between 0to l bits. 

Currently contemplate the (l +1)th bit state (Ck
l+2,S

k
l+1) for kth 

iteration. It may even be in any of (0, 0), (0, 1), or (1,0) 

states. In(k+1)th iteration, the(0,0)and(1,0)states from the kth 

iteration can properly turn out output of(0,1) following (2) 

and (3). For (0, 1) state, the carry with success propagates 

through this bit level following (3). Thus, all the single-bit 

adders can with success kill or propagate the carries till all 

carries square measure zero fulfilling the terminating 

condition. The mathematical kind bestowed higher than is 

valid below the condition that the iterations progress 

synchronously for all bit levels and also the needed input and 

outputs for a selected iteration will be in temporal relation 

with the progress of 1 iteration. Within the next section, we 

have a tendency to gift associate degree implementation of 

the projected design that is later on verified 
 

IV. DESIGN OF CSA MULTIPLIER 

Generally multiplication consists of 3 steps: generation of 

partial merchandise or PPs (PPG), reduction of partial 

merchandise (PPR), and final carry-propagate addition 

(CPA). Totally different multiplication algorithms vary 

within the approaches of PPG, PPR, and CA. 

 
Fig 3.Basic arithmetic steps of multiplication and 

accumulation. 

 
Fig.4.Multiplier with Carry saves Adder Architecture 

In the Carry Save Addition methodology, the primary row is 

either Half-Adders or Full-Adders. If the primary row of the 

partial product is enforced with Full-Adders, Cin are thought 

of “0”. Then the carries of every Full- Adder is diagonally 

forwarded to consequent row of the adder. The ensuing 
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multiplier factor is claimed to be Carry Save multiplier 

factor, as a result of the carry bits aren't straightaway another, 

however rather are saved for consequent stage. Within the 

style if the complete adders have 2 input file the third input is 

taken into account as zero. Within the finish, carries and 

sums are integrated in an exceedingly quick carry-propagate 

(e.g. ripple carry or carry look ahead) adder stage 

 

V. SIMULATION RESULTS 

CSA Multiplier: 

   
 

Design Summary 

Number of ports 50 

Number of nets 168 

Number of cells  68 

Number of combinational cells 49 

Number of sequential cells 16 

Number of macros/black boxes 0 

Number of buf/inv: 49 

 

PASTA Multiplier: 

 
Design Summary: 

Number of ports 50 

Number of nets 331 

Number of cells 59 

Number of combinational cells 34 

Number of sequential cells 16 

Number of macros/black boxes 0 

Number of buf/inv 34 

 

Timing Summary: 

CSA PASTA 

Data arrival time=13.88 Data arrival time= 10.33 

Data required time= 9.93 Data required time= 5.0 

 

VI. CONCLUSION 

Nowadays speed of the multiplier has turned into an 

advantage or requirement because of the significance of 

multiplier circuit in a wide variety of microelectronic 

systems. In this paper analyzation of different multiplier 

techniques taking area, timing as the main criteria.  Carry  

save  adder  is  proved  to  be  more  efficient  in  terms  of  

speed  compared  to  conventional multiplication techniques.  

However the carry save adder design generated the number 

of cells is 68 and modified parallel self-timed adder using 

multiplier in around 59 cells. Hence the area is reduced 

compared with carry save adder; on the other hand it 

consumes less hardware than other multiplication techniques.  
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