
International Journal For Technological Research In Engineering

Volume 4, Issue 4, December-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 580

DESIGN OF AN EFFICIENT PARALLEL SELF-TIMED ADDER

USING MULTIPLIER

Biruda Prasanthi
1
, Jhansi Rani Kaka

2

1
P.G.Scholar, VLSI,

2
Assistant Professor

Electronics and communication engineering department, University College of engineering Kakinada,

Kakinada

Abstract: In contemporary world there is a great need for

low power consumption circuit design, which is very

compatible with emphasis on high performance in DIP

(Digital Image Processing) system. In this paper the

proposed method presents a parallel single-rail self-timed

adder which uses recursive method for performing multi bit

binary addition and multipication. This design obtains good

performance without any special speedup circuitry. A

practical enactment is provided along with a completion

detection unit. The implementation is extensive and does

not have any practical limitations of high fan-outs. A high

fan-in gate is essential even though this is unavoidable for

asynchronous logic and is managed by connecting the

transistors in parallel. Integer addition is one of the most

significant operations in digital computer systems because

the performance of processors is outstandingly influenced

by the speed of their adders. PASTA design uses

multiplexers along with half adders. The absence of clock

generation and distribution units also results in less power

dissipation. Clock less chips offer power efficiency,

robustness and reliability. A multiplier is designed and

synthesized using existing adder and proposed adder to

show the superiority of the proposed approach.

Keywords: Asynchronous circuits, Array Multiplier, CSA,

PASTA

I. INTRODUCTION

Integer addition is one of the most essential operations in

digital computer systems. In addition to explicit arithmetic

(such as addition, subtraction, multiplication, and division)

performed in a program, additions are performed to

increment program counters and calculate effective

addresses. Adders are considered to be the heart of

computational circuits and addition has been the core for

many complex arithmetic circuits. Most of the adders have

been designed for asynchronous circuits as asynchronous

circuits do not assume any quantization of time and some still

use synchronous circuits as well. Thus, having free from

various problems of clocked (synchronous) circuits. Here we

have generated the design of binary adders and concentrated

on asynchronous self-timed adders. Self timed relate the logic

circuits that depend on timing assumptions for the accurate

operation of the circuit. Self-timed adders have the capacity

to run faster averaged for dynamic data, that early completion

sensing can avoid delay mechanism of synchronous circuits.

Adaptive signal processing has developed into a self-

contained field that finds wide range of real-life applications

such as adaptive equalization, noise and echo cancellation,

linear predictive coding, and adaptive beam-forming.

Adaptive signal processing algorithms are characterized by

their recursive operations for realizing algorithmic self-

designing/adaptation. To realize high-throughput VLSI

implementation of adaptive signal processing algorithms,

architecture-level technique pipelining is typically used.

Pipelined adaptive signal processing systems are essentially

subject to a trade-off between system throughput and signal

processing performance, i.e., deeper pipelined adaptation

feedback loop can realize higher throughput, but the delayed

feedback will incur larger performance degradation. It should

be pointed out that, for other recursive algorithms such as

infinite impulse response (IIR) filtering and Viterbi

algorithm, direct pipelining may simply ruin their

functionality and appropriate algorithm-level modification is

required for the use of pipelining. A pipelined adaptive

signal processing algorithm implemented using the

conventional synchronous pipeline typically has a fixed

pipeline depth that is determined in the design phase to

accommodate the highest run-time throughput requirement.

Although it is possible to on-the-fly configure the pipeline

depth of synchronous pipeline by selectively bypassing

certain levels of registers, this is very inflexible and cannot

realize fine-grain graceful configuration on the

throughput/performance trade-offs. For example, consider an

8-stage pipelined recursive adaptation loop in which the

registers are almost evenly placed along the loop for

maximizing the throughput. If we bypass one level of

registers to realize a 7-stage pipeline, the delay of the critical

path may double and the throughput will reduce almost by

half. Self-timed pipeline works in a different way from its

synchronous counterpart. Without a common and discrete

notion of time, self-timed pipeline relies on the handshake

between components to perform the synchronization and

communication. Each distinct data propagating through a self

timed pipeline is conventionally called a token. The pipeline

depth of a self-timed pipeline simply equals the number of

tokens present in the pipeline at the same time. Hence, we

can dynamically configure the pipeline depth by controlling

the number of tokens present in the pipeline. This property of

self-timed pipeline has been exploited in the design of a

mixed synchronous-asynchronous FIR filter that can support

variable latency (in terms of clock cycles) and power

management of an embedded, single-issue processor. In

pipelined adaptive signal processing systems, the pipeline

depth of the adaptation feedback loops is the key to tune the

inherent trade-off between throughput and signal processing

performance. This directly motivates us to apply self-timed

International Journal For Technological Research In Engineering

Volume 4, Issue 4, December-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 581

pipeline for the implementation of adaptive signal processing

systems to realize gracefully configurable

throughput/performance trade-off. This can be leveraged to

improve the overall system performance in many

circumstances. For example, for adaptive signal processing

systems with variable data rate, we can dynamically adjust

the pipeline depth to the minimum allowable value according

to the current data rate to realize the best signal processing

performance. These Self-timed adders have the capacity to

run faster than the conventional circuit design. This paper

presents an asynchronous parallel self-timed adder (PASTA).

This design uses half-adders (HAs) with the multiplexers

requiring minimum interconnections. Thus, making way for

many VLSI implementations. For independent carry chain

blocks PASTA works in a parallel manner. There are four

levels of minimization of power dissipation in CMOS based

system designs: technology, circuit, architecture and

algorithm. Generally choosing appropriate circuit design

style 20% to 30 % power can be saved in circuit level.

II. BACKGROUND

Addition is the most common and often used arithmetic

operation on microprocessor, digital signal processor,

especially digital computers. Also, it serves as a building

block for synthesis all other arithmetic operations. Therefore,

regarding the efficient implementation of an arithmetic unit,

the binary adder structures become a very critical hardware

unit. A carry-save adder is a type of digital adder, used in

computer micro architecture to compute the sum of three or

more n bit numbers in binary. It differs from other digital

adders in that it outputs two numbers of the same dimensions

as the inputs, one which is a sequence of partial sum bits and

another which is a sequence of carry bits.

Consider the sum: 12345678+87654322=100000000. Using basic

arithmetic, calculate right to left, "8+2=0, carry 1",

"7+2+1=0, carry 1", "6+3+1=0, carry 1", and so on to the end

of the sum. Although, the last digit of the result at once, we

cannot know the first digit until every digit in the calculation,

passing the carry from each digit to the one on its left. Thus

adding two n-digit numbers has to take a time proportional to

n, even if the machinery is capable of performing many

calculations simultaneously. The carry-save unit consists of n

full adders, each of which computes a single sum and carry bit

based solely on the corresponding bits of the three input

numbers. Given the three n bit numbers a, b, and c, it

produces a partial sum psi and a shift-carry sci:

Psi = ai ⊕ bi ⊕ ci

Sci = (ai ˄bi) ˅ (ai ˄ ci) ˅ (bi ˄ ci)

The entire sum can then be computed by:

 Shifting the carry sequence sc left by one place.

 Appending a 0 to the front (most significant bit) of

the partial sum sequence ps.

 Using a ripple carry adder to add these two together

and produce the resulting n + 1-bit value.

Array Multiplier Array number is renowned thanks to its

regular structure. Number circuit relies on add and shift rule.

Every partial product is generated by the multiplication of the

number with one number bit. The partial product is shifted

per their bit orders then additional. The addition will be

performed with traditional carry save adder. First advantage

of the array multiplier is that it has a regular structure. Since

it is regular, it is easy to layout and has a small size. . A

second advantage of the array multiplier is its ease of design

for a pipelined architecture.

III. DESIGN OF PASTA

In this segment, the design and theory behind nourishment is

presented. The adder initial accepts 2 input operands to

perform [Fig.1.] additions for every bit. Subsequently, it

iterates exploitation earlier generated carry and sums to

perform half-additions repeatedly till all carry bits are

consumed and settled at zero level. The general design of the

adder is shown in Fig. 1. The choice input for two-input

multiplexers corresponds to the Request handclasp signal

and can be one zero to one transition denoted by SEL. can

it’ll at the start choose the particular operands throughout

SEL=0and will switch to feedback/carry methods for

consequent iterations exploitation SEL=1. The feedback path

from the HAs allows the multiple iterations to continue till

the completion once all carry signals can assume zero values.

Fig .1. General block diagram of PASTA

3.1 State Diagrams

In Fig. 3, 2 state diagrams are drawn for the initial section

and therefore the repetitious section of the projected design.

Every state is delineate by (Ci+1Si) pairwhereCi+1, Si

represent do and add values, severally, from the ith bit adder

block. Throughout the initial section, the circuit just works as

a combinatory hour angle operational in elementary mode.

It’s evident that because of the utilization of HAs rather than

FAs, state (11) cannot seem. During the repetitious section

(SEL=1), the feedback path through electronic device block

is activated. The carry transitions (Ci) are allowed as again

and again PRN to complete the formula. From the definition

of elementary mode circuits, the current style cannot be

thought-about as a elementary mode circuit because the

input–outputs can undergo many transitions before

manufacturing the ultimate output. It’s not a Muller circuit

operating outside the basic mode either as internally; many

transitions can occur, as shown within the state diagram. this

can be analogous to cyclic consecutive circuits wherever gate

delays are utilised to separate individual states.

http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Carry_%28arithmetic%29
http://en.wikipedia.org/wiki/Adder_%28electronics%29#Full_adder
http://en.wikipedia.org/wiki/Logical_shift
http://en.wikipedia.org/wiki/Most_significant_bit
http://en.wikipedia.org/wiki/Adder_%28electronics%29#Ripple_carry_adder

International Journal For Technological Research In Engineering

Volume 4, Issue 4, December-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 582

Fig. 2. State diagrams for PASTA. (a) Initial phase. (b)

Iterative phase

3.2 Recursive Formula for Binary Addition

Let si
j and Ci+1

j denote the sum and carry, respectively, for ith

bit at the jth iteration. The initial condition (j =0) for addition

is formulated as follows

Si
0 = ai ⊕ bi

C0
i+1

 = aibi [1]

The jth iteration for the recursive addition is formulated by

Si
j = Sij-1⊕ Ci

j-1 ,0≤i<n [2]

Cj
i+1 =Si

j-1Ci
j-1, 0≤i≤n. [3]

The recursion is terminated at kth iteration when the

following condition is met

Cn
k + Cn-1

k +..............+C1
k = 0, 0≤k≤n. [4]

Now, the correctness of the algorithmic formulation is

inductively evidenced as follows.

Theorem 1: The algorithmic formulation of (1)–(4) can turn

out correct total for any range of bits and can terminate inside

a finite time.

Proof: A tendency to prove the correctness of the

algorithmic rule by induction on the specified range of

iterations for finishing the addition (meeting the terminating

condition).

Basis: contemplate the quantity decisions that no carry

propagation is needed, i.e., Ci
0 = zero for ∀i,i ∈[0..n]. The

projected formulation can turn out the right result by a single-

bit computation time and terminate instantly as (4) is met.

Induction: Assume that Ck
i+1≠0 for some ith bit at kth iteration.

Let l be such somewhat that Ck
l+1 =1. We have a tendency to

show that it'll be with success transmitted to next higher bit

within the (k+1) th iteration. As shown within the state

diagram, the kth iteration of lth bit state (Ck
l+1,Sl

k) and (l +1)th

bit state Ck
l+2,S

k
l+1) can be in any of (0,0), (0,1),or(1,0) states.

As Ck
l+1 =1, it implies that Sl

k =0. Hence, from (3), Cl+1
k+1 =0

for any input condition between 0to l bits.

Currently contemplate the (l +1)th bit state (Ck
l+2,S

k
l+1) for kth

iteration. It may even be in any of (0, 0), (0, 1), or (1,0)

states. In(k+1)th iteration, the(0,0)and(1,0)states from the kth

iteration can properly turn out output of(0,1) following (2)

and (3). For (0, 1) state, the carry with success propagates

through this bit level following (3). Thus, all the single-bit

adders can with success kill or propagate the carries till all

carries square measure zero fulfilling the terminating

condition. The mathematical kind bestowed higher than is

valid below the condition that the iterations progress

synchronously for all bit levels and also the needed input and

outputs for a selected iteration will be in temporal relation

with the progress of 1 iteration. Within the next section, we

have a tendency to gift associate degree implementation of

the projected design that is later on verified

IV. DESIGN OF CSA MULTIPLIER

Generally multiplication consists of 3 steps: generation of

partial merchandise or PPs (PPG), reduction of partial

merchandise (PPR), and final carry-propagate addition

(CPA). Totally different multiplication algorithms vary

within the approaches of PPG, PPR, and CA.

Fig 3.Basic arithmetic steps of multiplication and

accumulation.

Fig.4.Multiplier with Carry saves Adder Architecture

In the Carry Save Addition methodology, the primary row is

either Half-Adders or Full-Adders. If the primary row of the

partial product is enforced with Full-Adders, Cin are thought

of “0”. Then the carries of every Full- Adder is diagonally

forwarded to consequent row of the adder. The ensuing

International Journal For Technological Research In Engineering

Volume 4, Issue 4, December-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 583

multiplier factor is claimed to be Carry Save multiplier

factor, as a result of the carry bits aren't straightaway another,

however rather are saved for consequent stage. Within the

style if the complete adders have 2 input file the third input is

taken into account as zero. Within the finish, carries and

sums are integrated in an exceedingly quick carry-propagate

(e.g. ripple carry or carry look ahead) adder stage

V. SIMULATION RESULTS

CSA Multiplier:

Design Summary

Number of ports 50

Number of nets 168

Number of cells 68

Number of combinational cells 49

Number of sequential cells 16

Number of macros/black boxes 0

Number of buf/inv: 49

PASTA Multiplier:

Design Summary:

Number of ports 50

Number of nets 331

Number of cells 59

Number of combinational cells 34

Number of sequential cells 16

Number of macros/black boxes 0

Number of buf/inv 34

Timing Summary:

CSA PASTA

Data arrival time=13.88 Data arrival time= 10.33

Data required time= 9.93 Data required time= 5.0

VI. CONCLUSION

Nowadays speed of the multiplier has turned into an

advantage or requirement because of the significance of

multiplier circuit in a wide variety of microelectronic

systems. In this paper analyzation of different multiplier

techniques taking area, timing as the main criteria. Carry

save adder is proved to be more efficient in terms of

speed compared to conventional multiplication techniques.

However the carry save adder design generated the number

of cells is 68 and modified parallel self-timed adder using

multiplier in around 59 cells. Hence the area is reduced

compared with carry save adder; on the other hand it

consumes less hardware than other multiplication techniques.

REFERENCES

[1]. Mohammed Ziaur Rahman, Lindsay Kleeman, and

Mohammad Ashfak Habib, “Recursive Approach to

the Design of a Parallel Self-Timed Adder

[2]. D. Geer, “Is it time for clockless chips?

[Asynchronous processor chips],” IEEE Comput.,

vol. 38, no. 3, pp. 18–19, Mar. 2005.

[3]. J. Sparsø and S. Furber, Principles of Asynchronous

Circuit Design. Boston, MA, USA: Kluwer

Academic, 2001.

[4]. P. Choudhury, S. Sahoo, and M. Chakraborty,

“Implementation of basic arithmetic operations

using cellular automaton,” in Proc. ICIT, 2008, pp.

79–80.

[5]. M. Z. Rahman and L. Kleeman, “A delay matched

approach for the design of asynchronous sequential

circuits,” Dept. Comput. Syst. Technol., Univ.

Malaya, Kuala Lumpur, Malaysia, Tech. Rep.

05042013, 2013.

[6]. M. D. Riedel, “Cyclic combinational circuits,”

Ph.D. dissertation, Dept. Comput. Sci., California

Inst. Technol., Pasadena, CA, USA, May 2004.

[7]. R. F. Tinder, Asynchronous Sequential Machine

Design and Analysis: A Comprehensive

Development of the Design and Analysis of Clock-

Independent State Machines and Systems. San

Mateo, CA, USA: Morgan, 2009.

[8]. W. Liu, C. T. Gray, D. Fan, and W. J. Farlow, “A

250-MHz wave pipelined adder in 2-μm

CMOS,”IEEE J. Solid-State Circuits, vol. 29, no. 9,

pp. 1117–1128, Sep. 1994.

[9]. F.-C. Cheng, S. H. Unger, and M. Theobald, “Self-

timed carry-lookahead adders,” IEEE Trans.

Comput., vol. 49, no. 7, pp. 659–672, Jul. 2000.

[10]. S. Nowick, “Design of a low-latency asynchronous

adder using speculative completion,” IEE Proc.

Comput. Digital Tech., vol. 143, no. 5, pp. 301–

307, Sep. 1996.

[11]. N. Weste and D. Harris, CMOS VLSI Design: A

Circuits and Systems Perspective. Reading, MA,

USA: Addison-Wesley, 2005

[12]. C. Cornelius, S. Koppe, and D. Timmermann,

“Dynamic circuit techniques in deep submicron

technologies: Domino logic reconsidered,” in Proc.

IEEE ICICDT, Feb. 2006, pp. 1–4

International Journal For Technological Research In Engineering

Volume 4, Issue 4, December-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 584

[13]. M. Anis, S. Member, M. Allam, and M. Elmasry,

“Impact of technology scaling on CMOS logic

styles,” IEEE Trans. Circuits Syst., Analog Digital

Signal Process., vol. 49, no. 8, pp. 577–588, Aug.

2002.

