
International Journal For Technological Research In Engineering

Volume 4, Issue 6, February-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 884

IMPLEMENTATION OF HASH FUNCTION FOR CRYPTOGRAPHY

(RSA SECURITY)

Syed Fateh Reza
1
, Mr. Prasun Das

2

1
M.Tech. (ECE),

2
Assistant Professor (ECE), Bitm,Bolpur

ABSTRACT: In this thesis, a new method for

implementing cryptographic hash functions is proposed.

This method seeks to improve the speed of the hash

function particularly when a large set of messages with

similar blocks such as documents with common Headers

are to be hashed. The method utilizes the peculiar run-time

configurability Feature of FPGA. Essentially, when a block

of message that is commonly hashed is identified, the hash

value is stored in memory so that in subsequent occurrences

of The message block, the hash value does not need to be

recomputed; rather it is Simply retrieved from memory, thus

giving a significant increase in speed. The System is self-

learning and able to dynamically build on its knowledge of

frequently Occurring message blocks without intervention

from the user. The specific hash Function to which this

technique was applied is blake, one of the SHA-3 finalists.

Keyword: Hash Function, FPGA, blake, SHA-3

I. INTRODUCTION

1.1 Cryptographic hash functions

There is no doubt about the fact that electronic

communication has revolutionized our world. The world has

progressed from communication with mainly letters written

on paper and sent through the post office to instant

communication via email, chat and social networking

websites like Facebook and Google+. Many communication

activities that were traditionally done via post are now done

through electronic means. These activities include

transferring documents, images, audio and video. A

cryptographic hash function is one which converts an input

data of arbitrary length into a fixed-length output.

Cryptographic hash functions are somewhat different from

ordinary hash functions used in computer programs;

however, for simplicity cryptographic hash functions will

simply be referred to as hash functions throughout the rest of

this thesis. The output of a hash function must have certain

properties; these are: pre-image resistance, second pre-image

resistance and collision resistance. These properties ensure

that the hash function is secure. The properties stem from the

ways in which hash functions have been attacked. Pre-image

resistance implies that the hash function is a one-way

function. That is, it should be infeasible for an attacker to

determine the original data (or message) from a given hash

code or digest (the digest is another name for the hash code

or hash value). Second pre-image resistance guarantees that

even the slightest change in a message will change the digest.

That is, if an attacker is given a message, it should be

infeasible for the attacker to manipulate the message and still

obtain the same digest as the original message digest.

Collision resistance gives the general analogy of fingerprint

with respect to the message digests. That is, every message is

expected to have a unique hash code and it should be

generally difficult for an attacker to find two messages with

the same hash code.

Mathematically, a hash function (H) is defined as follows:

H: {0, 1}* → {0, 1}n

In this notation, {0, 1}* refers to the set of binary elements

of any length including the empty string while {0, 1}n refers

to the set of binary elements of length n. Thus, the hash

function maps a set of binary elements of arbitrary length to

a set of binary elements of fixed length. Similarly, the

properties of a hash function are defined as follows:

x {0, 1}*; y {0,1}n

Pre-image resistance: given y= H(x), it should be difficult to

find x.

Second pre-image resistance: given x, it should be difficult to

find x‘ such that H(x) = H(x‘) (where x x‘).

Collision resistance: it should be hard to find any pair of x

and x‘ (with x x‘) such that H(x) = H(x‘)

The properties of second pre-image resistance and collision

resistance may seem similar but the difference is that in the

case of second pre-image resistance, the attacker is given a

message (x) to start with, but for collision resistance no

message is given; it is simply up to the attacker to find any

two messages that yield the same hash value. The word

―difficult‖ or the phrase ―hard to find‖ in this context implies

that it will take a long time (many years) and a huge amount

of memory for a computer to perform the computation. That

is, for example, it will take many years and a lot of memory

for a computer with today‘s technology standards to compute

a message from its digest value; thus, the computation is

regarded as infeasible. It is interesting to note that as

processing power of computers have increased over the

decades, some hash functions that were previously

considered secure (possessing all the properties of pre-image,

second pre-image and collision resistance) are now

considered ―broken‖. Also, if an attacker is able to prove that

the time it will take to ‗break‘ a hash function, though not

small has been significantly reduced, that hash function will

be considered weak. As computational power increased and

cryptanalysis of hash functions were performed, certain hash

function standards have also been revised because they were

found to be weak. It is desirable to have a hash function that

is secure and computationally efficient.

1.2 Applications of hash functions

As mentioned earlier, hash functions are used in certain

information security schemes. These include: digital

signatures, Message Authentication Codes (MACs) and

digital image watermarking. There are also simple

applications of hash functions such as password storage. In

International Journal For Technological Research In Engineering

Volume 4, Issue 6, February-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 885

password storage application, the password entered by a user

at the first log-in is not stored in the computer system; rather

the hash of the password is stored. To log into the system at

subsequent times, the user needs to enter the password; the

system hashes it and compares it with the stored hash. If

there is a match, the user is granted access to the system

otherwise the user is denied access. The advantage of this

scheme lies in the fact that if an attacker manages to gain

access to the system‘s storage devices, only the hash of the

password can be retrieved and this cannot be used to recover

the original password since the hash function is a one-way

function.

1.3 Problem statement

Hash functions, as previously established, are very useful in

information security schemes. Apart from the above

mentioned applications (digital signatures, digital image

watermarking and so on), hash functions are also utilized in

generating pseudo random numbers which are in turn utilized

in many cryptographic schemes. In most of these

applications, particularly digitalsignatures, digital image

watermarking and Message Authentication Codes, it is

desirable to have the hash function operate as fast as possible

especially when a huge traffic or load of messages are

expected to be operated on. Consequently, a lot of research

effort has been expended in the area of high speed

implementation of standardized or widely used hash

functions. The US National Institute of Standards and

Technology (NIST) has organized a competition to select a

new hash function standard that is expected to be atleast as

secure as and significantly faster than the current hash

function standard (SHA-2). This is in line with the objective

of making the hash function run faster and increase overall

performance when it is utilized along with other primitives in

information security schemes. The goal of this thesis is to

explore the high speed implementation of hash functions

using Field Programmable Gate Arrays (FPGAs) and the

Blake hash function (one of the final round candidates in the

competition organized by NIST).

II. LITERATURE SURVEY

As previously mentioned, a significant amount of research

effort has been expended in the area of high speed

implementation of hash functions. The Blake hash function

like many other hash functions was designed with the intent

of making it capable of running at high speed. It has a

relatively simple algorithm; its compression function is a

modified ―double round‖ version of Bernstein‘s stream

cipher ―chacha‖ which has been intensively analyzed and

found to be of excellent performance and parallelizable [4].

Blake has been examined by researchers seeking ways of

providing high speed operation. One of the techniques for

speed optimization of Blake that is found in literature is

parallelism [5]. Other speed optimization techniques that

have been applied to Blake are pipelining (in an area of the

algorithm where pipelining is feasible) [6] and the use of

carry-save adders [6] in the compression function. These

techniques focus on the main ‗core‘ of the hash function.

Nowhere, to the best of our knowledge has any attempt been

made to improve the speed of the hash function by looking at

the iterative/ repetitive process of hashing. The hash

functions in use today evolved from weaknesses found in

previous hash functions. The first publicly known hash

function was developed by Ronald Rivest in 1989 and it was

known as Message-Digest Algorithm (MD2). In 1990, Rivest

developed another hash algorithm named MD4. MD4 was

based on the Merkle-Damgard construction [7]. In 1991,

Rivest again developed another hash algorithm to replace

MD4; this new algorithm was named MD5. Meanwhile the

National Institute of Standards and Technology (NIST) was

also working on a hash function standard. In 1993, NIST

developed the Secure Hash Standard (SHA). This standard

was published by NIST as a US Federal Information

Processing Standard (FIPS). However, shortly after the

publication, the algorithm was withdrawn due to an

undisclosed "significant flaw". It was replaced by a revised

version named SHA-1. SHA-1 has been widely used in

information security schemes such as Transport Layer

Security (TLS), Secure Sockets Layer (SSL), Internet

Protocol Security (IPsec), Secure Shell (SSH) and Pretty

Good Privacy (PGP). SHA-2, a set of hash functions (SHA-

224, SHA-256, SHA-384, and SHA-512) was designed by

the National Security Agency (NSA) and published by NIST

in 2001. These hash functions in SHA-2 are named

according to the number of bits of their digest; SHA-256 for

instance has 256 bits in its digest. SHA-2 was created as an

update to the former standard (SHA-1).

III. PREVIOUS WORKS (HIGH-SPEED

IMPLEMENTATION OF BLAKE)

Certain techniques have been applied to hardware

implementations of Blake in an attempt to optimize the speed

of the hash function. These techniques are: parallelism,

pipelining and the use of fast adders. In the following

sections we shall examine each of these techniques.

3.1 Parallelism

Parallelism is one of the methods that have been applied for

the speed optimization of Blake. The main task that

consumes time in the hash function‘s algorithm is the state

update. The initialization is a process that simply depends on

a few XOR gates and combinational logic; this doesn‘t

consume time. Similarly, the finalization is a process that

depends on XOR gates and utilizes only combinational logic;

it consumes a relatively small amount of time. However, for

the state update; first of all it utilizes the g-functions which

have addition, rotation operations; these can consume some

time. Secondly, the full state update takes 14 rounds of

similar g-function operations. Thus, if the speed of the hash

function is to be increased, one of the main areas to consider

would be the state update. The update of the state columns

and diagonals can be done sequentially; that is, one column

(or diagonal) updated at a time or it could be done with all 4

columns updated simultaneously. However, all the columns

must be updated before the diagonals are updated because

the diagonal update makes use of the new state variable

values obtained from the column update. Parallelism is

applied to Blake by updating all the columns of the state

simultaneously and then similarly updating all the diagonals

International Journal For Technological Research In Engineering

Volume 4, Issue 6, February-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 886

of the state simultaneously.

3.2 Pipelining

In the g-function, some of the operations performed could

take a relatively long period of time. The g-function is a

modified ‗double‘ round of the stream cipher chacha. The

fact that it is a double round implies that the outputs of some

operations in the g-function are inputs to some other

operations in the same g-function. In particular, computations

involving the XOR of message and constant words, one of

which is given below:

vx1 = vx1+ vx2 + (mσr (2i) ^ Cσr (2i+ 1))

consume a longer time because there are three major

operations involved. Thus, these operations constitute the

critical path of the g-function (the path with the longest

delay).The critical path influences the speed (throughput) of

the overall computation. A long critical path delay requires a

long the clock period and hence the speed of the hash

function is reduced. However, a pipeline stage may be used

to improve the speed. Since there are 14 rounds of repeated

g-function computations, if a pipeline register is inserted into

the critical path of the g-function; thereby creating a two

stage pipeline, then the first stage of the pipeline for the next

round can be executed while the second stage of the pipeline

for the current round is executing. The net effect is an

increase in the clock rate and consequently an increase in

speed (throughput) of the hash function. This pipeline

technique was applied in [6]. Figure 5 illustrates the method.

Figure 3.1 Pipelining applied to Blake

As seen in figure 5, when pipelining is applied, 3 g-function

computations were accomplished within a time period of t2;

whereas without pipelining only 2 g-functions were

accomplished within the same time period.

3.3 Fast adders

The third technique that has been applied for speed

optimization in Blake is the use of carry-save and carry-look

ahead adders in the g-function. These are fast adders. The

technique was applied in [6]. Carries are a major source of

delay in additions when ripple adders are used because a

carry needs to propagate to the last full adder before the sum

can be considered valid. The additions in the g-function of

Blake are 32-bit additions; thus if ripple adders are used, then

the time it takes for a carry to propagate from the full adder

(FA) at the least significant bit (LSB) position to the full

adder at the most significant bit position (MSB) can be

significant. To overcome this source of delay, 2 carry-save

adders (CSA) are used when three numbers are to be added,

with a carry -lookahead adder (CLA) performing the final

stage of the addition. This is shown in figure 6 for a 2 bit

number. The CSA is a FA connected in such a way that it

adds corresponding bits of the 3 numbers directly similar to

the way we add numbers on paper. This saves a significant

amount of time since the few carries generated are added

with a CLA. The arrangement can be easily extended to 32

bits.

Figure 3.2: Fast adders

IV. PROPOSED DESIGN

The speed optimizations techniques discussed in the previous

chapter essentially focus on the process of hashing one

message block. These techniques are effective and aim at

reducing the time spent in hashing each message block,

thereby reducing the overall time spent in hashing a message

which may contain many blocks. For example, if the time

spent in hashing a message block has been reduced through

the use of fast adders from 50ns to 45ns and there are 1000

messages to be hashed, each containing 10 message blocks;

the minimum time that would be spent in hashing these

messages would be reduced from 0.5ms to 0.45ms. Thus, the

speed has been improved. A similar analogy holds for the

techniques of parallelism and pipelining. However, there is a

particular situation in which the speed of the hash function

can be potentially increased further but these techniques

cannot bring about the improvement. This situation occurs

when many messages which have some identical message

blocks are to be hashed. For instance, if message blocks 1

and 2 out of the 10 message blocks in the messages of our

previous example are identical but message blocks 3 to 10

are different, these messages will still give distinct hash

codes. However, the chain values (intermediate hash values)

obtained for message blocks 1 and 2 will be the same for all

the messages. The implication of this, is that in computing

the digests of the 1000 messages, the hash function will

perform the same computation 2,000 times (the hash code of

message block 1 will be computed 1000 times, the same goes

for message block 2, so in total there will be 2,000 identical

or repeated computations). If there was a way to bypass these

repeated computations, this would certainly lead to a

significant increase in speed; the time taken to compute the

hash codes would be reduced by an additional 0.1ms.

Our design takes the situation in which messages with

common blocks are to be hashed into consideration and

provides a way of bypassing the redundant computations that

would otherwise have to be made; thus providing high speed

International Journal For Technological Research In Engineering

Volume 4, Issue 6, February-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 887

operation. The design allows the previously discussed

techniques of parallelism, pipelining and fast adders to be

applied to the Blake hash function but in addition it provides

a method of avoiding redundant computations, thereby

leading to a further increase in the speed of the hash function.

The design is self-learning; that is, it builds up its knowledge

of common message blocks without intervention from the

user. The design incorporates three major components to

facilitate these:

Message preprocessor: This component independently

identifies common message blocks in the messages that are

being hashed, determines their initial values, counter values

and computes their hash codes.

Memory: A memory device is used to store the hash code of

any common message block that has been identified by the

message preprocessor.

Decoder: This component is used to determine if an inputted

message block is a common message block. If the inputted

message block is a common message block, the decoder

outputs the address of the memory location containing the

hash code of the common message block. In addition, it also

outputs a signal which indicates to the hash function unit that

the hash code of the inputted message blocks is already

available in memory and consequently, there is no need to

compute it.

In the following sections we shall discuss each of these

components and how they interconnect to achieve the desired

operation.

4.1 Objective of Proposed Work
Hash functions, as previously established, are very useful in

information security schemes. Apart from the above

mentioned applications (digital signatures, digital image

watermarking and so on), hash functions are also utilized in

generating pseudo random numbers which are in turn utilized

in many cryptographic schemes. In most of these

applications, particularly digital signatures, digital image

watermarking and Message Authentication Codes, it is

desirable to have the hash function operate as fast as possible

especially when a huge traffic or load of messages are

expected to be operated on. Consequently, a lot of research

effort has been expended in the area of high speed

implementation of standardized or widely used hash

functions. This is in line with the objective of making the

hash function run faster and increase overall performance

when it is utilized along with other primitives in information

security schemes. The goal of this thesis is to explore the

Implementation of Cryptographic Hash Function through

Integrated Simulation work.

REFERENCE

[1] M. Bellare, R. Canetti and H. Krawczyk, "Keying

hash functions for message authentication," in

Advances in Cryptology — CRYPTO ‘96, N.

Koblitz, Ed: Springer Berlin / Heidelberg, 1996, pp.

1-15.

[2] J. Black, S. Halevi, H. Krawczyk, T. Krovetz and P.

Rogaway, "UMAC: fast and secure message

authentication," in Advances in Cryptology —

CRYPTO‘ 99, M. Wiener, Ed: Springer Berlin /

Heidelberg, 1999, pp. 79-79.

[3] P.W. Wong and N. Memon, "Secret and public key

image watermarking schemes for image

authentication and ownership verification," Image

Processing, IEEE Transactions on, vol. 10, no. 10,

pp. 1593-1601 2001.

[4] J.P. Aumasson, L. Henzen, M. Willi and C.W.R.

Phan, SHA-3 Proposal BLAKE, January 11, 2011.

Available: http://www.131002.net/blake/

[Accessed: August 2011].

[5] S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos,

J.M. Schmidt and A. Szekely, ―High-speed

hardware implementations of BLAKE, Blue

Midnight Wish, CubeHash, ECHO, Fugue, Groestl,

Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3,

SIMD, and Skein‖, Cryptology ePrint Archive,

report 2009/510 2009.

[6] L. Jianzhou and R. Karri, ―Compact hardware

architectures for BLAKE and LAKE hash

functions,‖ in Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE International

Symposium on, 2010, pp. 2107-2110.

[7] I. Damgard, "A design principle for hash functions,"

in Advances in Cryptology — CRYPTO‘ 89

Proceedings, G. Brassard, Ed: Springer Berlin /

Heidelberg, 1990, pp. 416-427.

[8] H. Dobbertin, ―Cryptanalysis of MD4,‖ in Fast

Software Encryption 1996 Proceedings, volume

1039 of Lecture Notes in Computer Science, D.

Gollmann, Ed: Springer, 1996, pp. 53– 69.

[9] X. Wang, H. Yu and Y. L. Yin, ―Efficient collision

search attacks on SHA-0,‖ in Advances in

Cryptology – CRYPTO 2005 Proceedings, volume

3621 of Lecture Notes in Computer Science, V.

Shoup, Ed: Springer, 2005, pp. 1–16.

[10] X. Wang, Y. L. Yin and H. Yu, ―Finding collisions

in the full SHA-1,‖ in Advances in Cryptology –

CRYPTO 2005 Proceedings, volume 3621 of

Lecture Notes in Computer Science, V. Shoup, Ed:

Springer, 2005, pp. 17–36.

