
International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1359

DATA STORAGE SECURITY IN CLOUD COMPUTING

Freshka Kumari
1
, Asst Prof. Mr. Sandeep Kumar

2

M.Tech-CSE IV Semester (Multimedia Technology),

Department of Computer Science & Engineering, Kalinga University, Naya Raipur (C.G)

ABSTRACT: Cloud Computing has been envisioned as the

next- generation architecture of IT Enterprise . In contrast

to traditional solutions , where the IT services are under

proper physical , logical and personnel controls , Cloud

Computing moves the application software and databases to

the large data centers, where the management of the data

and services may not be fully trustworthy . This unique

attribute , however , poses many new security challenges

which have not been well understood . In this article , we

focus on cloud data storage security , which has always

been an important aspect of quality of service .To ensure

the correctness of users’ data in the cloud, we propose an

effective and flexible distributed scheme with two salient

features, opposing to its predecessors. By utilizing the

homomorphic token with distributed verification of erasure

- coded data , our scheme achieves the integration of

storage correctness insurance and data error localization,

i.e., the identification of misbehaving server. Unlike most

prior works, the new scheme further supports secure and

efficient dynamic operations on data blocks, including :

data update, delete and append . Extensive security and

performance analysis shows that the proposed scheme is

highly efficient and resilient against Byzantine failure,

malicious data modification attack, and even server

colluding attacks.

Keywords: SaaS, PaaS , Iaas , homomorphic.

I. INTRODUCTION

Cloud computing is the most demanded advanced technology

throughout the world. As cloud computing is an Internet

based computer technology. Some of the major firms like

Amazon, Microsoft and Google have implemented the

“CLOUD” and have been using it to speed up their business.

Cloud computing has given a new dimension to the complete

outsourcing arena (SaaS, PaaS and IaaS) and they provide

ever cheaper powerful processor with these computing

architecture. The simplest thing that a computer does is to

store in the available space and retrieve information

whenever requested by the authenticated user. We can store

any kind of data that we use in our day to day life from

simple photographs, favorite songs, or even save movies to

huge bulk amounts of data which is confidential. The

increasing network bandwidth and reliable yet flexible

network connections make it even possible that users can

now subscribe high quality services from data and software

that reside solely on remote data centers. In this paper, we

propose an effective and flexible scheme with explicit

dynamic data support to ensure the correctness of users’ data

in the cloud. We rely on erasure- correcting code in the file

distribution preparation to provide redundancies and

guarantee the data dependability. This construction

drastically reduces the communication and storage overhead

as compared to the traditional replication-based file

distribution techniques. Error Localization is the data

corruption that has been detected during the storage

correctness verification, our scheme can almost guarantee the

simultaneous localization of data errors, i.e., the

identification of the misbehaving server(s). This is among

first few ones in this field to consider distributed data storage

in Cloud Computing. The main contribution can be

recapitulated as the following aspects:

When compared to its predecessors they only provide binary

results about the data storage status across the distributed

servers, the protocol used in our work provides point of data

error (i.e. Error Localization).

We provide secure and efficient dynamic operations on data

blocks.

II. CLOUD STORAGE MODELS

There are models for cloud storage that allow users to

maintain control over their data. Cloud storage [2] has

evolved into three categories, one of which permits the

merging of two categories for a cost-efficient and secure

option. Public cloud storage providers, which present storage

infrastructure as a leasable commodity (both in terms of

long- term or short-term storage and the networking

bandwidth used within the infrastructure). Private clouds use

the concepts of public cloud storage but in a form that can be

securely embedded within a user's firewall. Finally, hybrid

cloud storage permits the two models to merge, allowing

policies to define which data must be maintained privately

and which can be secured within public clouds.

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1360

III. PROBLEM STATEMENT

A. System Model

A representative network architecture for cloud data storage

is illustrated in Figure 1. Three different network entities can

be identified as follows:

User: users, who have data to be stored in the cloud and rely

on the cloud for data computation, consist of both individual

consumers and organizations.

Cloud Service Provider (CSP): a CSP, who has significant

resources and expertise in building and managing distributed

cloud storage servers, owns and operates live Cloud

Computing systems.

Third Party Auditor (TPA): an optional TPA, who has

expertise and capabilities that users may not have, is trusted

to assess and expose risk of cloud storage services on behalf

of the users upon request.

In cloud data storage, a user stores his data through a CSP

into a set of cloud servers, which are running in a simulta-

neous, cooperated and distributed manner. Data redundancy

can be employed with technique of erasure-correcting code to

further tolerate faults or server crash as user’s data grows in

size and importance. Thereafter, for application purposes, the

user interacts with the cloud servers via CSP to access or

retrieve his data. In some cases, the user may need to perform

block level operations on his data. The most general forms of

these operations we are considering are block update, delete,

insert and append. As users no longer possess their data

locally, it is of critical importance to assure users that their

data are being correctly stored and maintained. That is, users

should be equipped with security means so that they can

make continuous correctness assurance of their stored data

even without the existence of local copies. In case that users

do not necessarily have the time, feasibility or resources to

monitor their data, they can delegate the tasks to an optional

trusted TPA of their respective choices. In our model, we

assume that the point-to-point communication channels

between each cloud server and the user is authenticated and

reliable, which can be achieved in practice with little

overhead. Note that we don’t address the issue of data

privacy in this paper, as in Cloud Computing, data privacy is

orthogonal to the problem we study here.

B. Adversary Model

Security threats faced by cloud data storage can come from

two different sources. On the one hand, a CSP can be self-

interested, untrusted and possibly malicious. Not only does it

desire to move data that has not been or is rarely accessed to

a lower tier of storage than agreed for monetary reasons, but

it may also attempt to hide a data loss incident due to

management errors, Byzantine failures and so on. On the

other hand, there may also exist an economically- motivated

adversary, who has the capability to compromise a number of

cloud data storage servers in different time intervals and

subsequently is able to modify or delete users’ data while

remaining undetected by CSPs for a certain period.

Specifically, we consider two types of adversary with

different levels of capability in this paper:

Weak Adversary: The adversary is interested in corrupting

the user’s data files stored on individual servers. Once a

server is comprised, an adversary can pollute the original

data files by modifying or introducing its own fraudulent

data to prevent the original data from being retrieved by the

user. Strong Adversary: This is the worst case scenario, in

which we assume that the adversary can compromise all the

storage servers so that he can intentionally modify the data

files as long as they are internally consistent. In fact, this is

equivalent to the case where all servers are colluding

together to hide a data loss or corruption incident.

C. Design Goals

 To make sure the security and dependability for

data storage in cloud under the aforementioned

antagonist model, we aim to design efficient

mechanisms for dynamic data verification and

operation and achieve the following goals:

 Storage accuracy: to ensure users that their data are

indeed stored appropriately and kept intact all the

time in the cloud.

 Fast localization of data error: to effectively locate

the mal- functioning server when data corruption

has been detected.

 Dynamic data support: to maintain the same level of

storage correctness assurance even if users modify,

erase or affix their data files in the cloud.

 Dependability: to enhance data availability against

Byzantine failures, malicious data modification and

server colluding attacks, i.e. minimizing the effect

brought by data errors or server failures.

 Lightweight: to enable users to perform storage

correctness checks with minimum overhead.

D. Notation and Preliminaries

F – the data file to be stored. We assume that F can be

denoted as a matrix of m equal-sized data vectors, each

consisting of l blocks. Data blocks are all well represented as

elements in Galois Field GF (2p) for p = 8 or 16.

A – The dispersal matrix used for Reed-Solomon coding. • G

– The encoded file matrix, which includes a

set of n = m + k vectors, each consisting of l blocks.

fkey(·) – pseudorandom function (PRF), which is defined as

f : {0, 1}∗ × key → GF (2p).

φkey(·) – pseudorandom permutation (PRP), which is

defined as φ : {0, 1}log2(l) × key → {0, 1}log2(l).

ver – a version number bound with the index for individual

blocks, which records the times the block has been modified.

Initially we assume ver is 0 for all data blocks.

sij
ver

 – the seed for PRF, which depends on the file name

block index i, the server position j as well as the

optional block version number ver.

IV. SECURE DATA STORAGE IN CLOUD
In cloud data storage system, users store their data in the

cloud and no longer possess the data

locally. Thus, the correctness and availability of the data files

being stored on the distributed cloud servers must be

guaranteed. One of the key issues is to effectively detect any

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1361

unauthorized data modification and corruption, possibly due

to server compromise and/or random Byzantine failures.

Besides, in the distributed case when such inconsistencies are

successfully detected, to find which server the data error lies

in is also of great significance, since it can be the first step to

fast recover the storage errors. To address these problems,

our main scheme for ensuring cloud data storage is presented

in this section. The first part of the section is devoted to a

review of basic tools from coding theory that are needed in

our scheme for file distribution across cloud servers. Then,

the homomorphic token is introduced. The token

computation function we are considering belongs to a family

of universal hash function, chosen to preserve the

homomorphic properties, which can be perfectly integrated

with the verification of erasure- coded data. Subsequently, it

is also shown how to derive a challenge response protocol for

verifying the storage correctness as well as identifying

misbehaving servers. Finally, the procedure forfile retrieval

and error recovery based on erasure-correcting code is

outlined.

A. Token exactness

In order to achieve assurance of data storage correctness and

data error localization, our scheme entirely relies on the pre-

computed verification tokens. The main idea is before file

distribution the user pre-computes a certain number of short

verification tokens on individual; each token covers a random

subset of data blocks. Later, when the user wants to make

sure the storage correctness for the data in the cloud, he

challenges the cloud servers with a set of randomly generated

block indices. After getting assurance of the user it again asks

for authentication by which the user is confirmed to be the

authenticated user. Upon receiving assurance, each cloud

server computes a short “signature” over the specified blocks

and returns them to the user. The values of these signatures

should match the corresponding tokens pre-computed by the

user. Meanwhile, as all servers operate over the same subset

of the indices, the requested response values for integrity

check must also be a valid codeword determined by a secret

matrix. Suppose the user wants to challenge the cloud

server’s t times to make sure the correctness of data storage.

Then, he must pre-compute t verification tokens for each

function, a challenge key and a master key are used. To

generate the ith token for server j, the user acts as follows:

I. Derive a arbitrary value i and a permutation key based on

master permutation key.

II. Compute the set of randomly-chosen indices:

III. Calculate the token using encoded file and the arbitrary

value derived.

Algorithm 1 Token Pre-computation

 Procedure

 Choose parameters l, n and function f;

 Choose the number t of tokens;

 Choose the number r of indices per verification; 5.

Generate master key and challenge key;

 for vector G(j), j ←1, n do

 for round i← 1, t do

 Derive i = f(i) and k(i) from master key .

 Compute v(j)

 end for

 end for

 Store all the vis locally.

 end procedure

B. Correctness Verification and Error Localization

Error localization is a key requirement for eradicating errors

in storage systems. However, many previous schemes do not

explicitly consider the problem of data error localization.

Thus it only provides binary results for the storage

verification. Our scheme provides those by integrating the

correctness verification and error localization in our

challenge-response protocol: the response values from

servers for each challenge not only determine the correctness

of the distributed storage, but also contain information to

locate potential data error(s).

Specifically, the procedure of the i
th

 challenge-response for a

cross-check over the n servers is described as follows:

The user reveals the i as well as the i
th

 key k (i) to each

servers

The server storing vector G aggregates those r rows

Specified by index k(i) into a linear combination R

Upon receiving R is from all the servers, the user takes away

values in R.

Then the user verifies whether the received values remain a

valid codeword determined by secret matrix. Because all the

servers operate over the same subset of indices, the linear

aggregation of these r specified rows (R(1)i , . . . ,R(n)i) has

to be a codeword in the encoded file matrix. If the above

equation holds, the challenge is passed. Otherwise, it

indicates that among those specified rows, there exist file

block corruptions. Once the inconsistency among the storage

has been successfully detected, we can rely on the pre-

computed verification tokens to further determine where the

potential data error(s) lies in. Note that each response R(j) i

is computed exactly in the same way as token v(j) i , thus the

user can simply find which server is misbehaving by

verifying the following n equations:

Algorithm 2 gives the details of correctness verification and

error localization.

Algorithm 2

Correctness Verification and Error Localization

 procedure CHALLENGE(i)

 Recompute i = fl (i) and k(i) master key ;

 Send {i, k(i) } to all the cloud servers;

 Receive from servers R

 for (j ← m + 1, n) do

 R(j) ← R(j)−Prq=1 fkj (sIq,j)·_qi , Iq = _k(i)prp(q)

 end for

 if ((R(1)i , . . . ,R(m)i) ·P==(R(m+1)i , . . .

 ,R(n)i)) then

 Accept and ready for the next challenge.

 else

 for (j ← 1, n) do

 if (R ! =V) then

 return server is misbehaving.

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1362

 end if

 end for

 end if

 end procedure

V. PROVIDING DYNAMIC DATA OPERATION

SUPPORT

So far, we assumed that F represents archived data. However,

in cloud data storage, there are many potential scenarios

where data stored in the cloud is dynamic, like electronic

documents, photos, or log files etc. Therefore, it is crucial to

consider the dynamic case, where a user may wish to perform

various block-level operations of revise, erase and affix to

modify the data file while maintaining the storage correctness

assurance. The straightforward and insignificant way to

support these operations is for user to download all the data

from the cloud servers and re-compute the whole parity

blocks as well as verification tokens. This would clearly be

highly inefficient. In this section, we will show how our

scheme can unambiguously and efficiently handle dynamic

data operations for cloud data storage.

A. Revise Operation

In cloud data storage, sometimes the user may need to

modify some data block(s) stored in the cloud, from its

current value f to a new one. We refer to this operation as

data revise.

B. Erase Operation

Sometimes, after being stored in the cloud, certain data

blocks may need to be erased. The erase operation we are

considering is a general one, in which user replaces the data

block with zero or some special reserved data symbol. From

this point of view, the erase operation is actually a special

case of the data revise operation, where the original data

blocks can be replaced with zeros or some predetermined

special blocks.

C. Append Operation

In some cases, the user may want to increase the size of his

stored data by adding blocks at the end of the data file, which

we refer as data append. We anticipate that the most frequent

append operation in cloud data storage is bulk append, in

which the user needs to upload a large number of blocks (not

a single block) at one time.

D. Affix Operation

An affix operation to the data file refers to an affix operation

at the desired index position while maintaining the same data

block structure for the whole data file, i.e., inserting a block F

corresponds to shifting all blocks starting with index j + 1 by

one slot. An affix operation may affect many rows in the

logical data file matrix F, and a substantial number of

computations are required to renumber all the subsequent

blocks as well as re-compute the challenge-response tokens.

Therefore, an efficient affix operation is difficult to support

and thus we leave it for our future work.

VI. RELATED WORK

Jules [2] described a formal “proof of retrievability” (POR)

model for ensuring the remote dat a integrity. Their scheme

combines spot-checking and error correcting code to ensure

both possession and retrievability of files on archive service

systems. Shacham [3] built on this model and constructed a

random linear function based homomorphic authenticator

which enables unlimited number of challenges and requires

less communication overhead due to its usage of relatively

small size of BLS signature. In their subsequent work,

Ateniese [4] described a PDP scheme that uses only

symmetric key based cryptography. This method has lower-

overhead than their previous scheme and allows for block

updates, deletions and appends to the stored file, which has

also been supported in our work. However, their scheme

focuses on single server scenario and does not provide data

availability guarantee against server failures, leaving both the

distributed scenario and data error recovery issue

unexplored. The explicit support of data dynamics has

further been studied in the two recent works [5] and [6]. The

incremental cryptography work done by Bellare [10] also

provides a set of cryptographic building blocks such as hash,

MAC, and signature functions that may be employed for

storage integrity verification while supporting dynamic

operations on data. However, this branch of work falls into

the traditional data integrity protection mechanism, where

local copy of data has to be maintained for the verification. It

is not yet clear how the work can be adapted to cloud storage

scenario where users no longer have the data at local sites

but still need to ensure the storage correctness efficiently in

the cloud. Portions of the work presented in this paper have

previously appeared as an extended abstract in [7]. We have

revised the article a lot and add more technical details as

compared to [7]. The primary improvements are as follows:

Firstly, we provide the protocol extension for privacy-

preserving third-party auditing, and discuss the application

scenarios for cloud storage service. Secondly, we add

correctness analysis of proposed storage verification design.

Thirdly, we completely redo all the experiments in our

performance evaluation part, which achieves significantly

improved result as compared to [7]. We also add detailed

discussion on the strength of our bounded usage for protocol

verifications and its comparison with state-of-the-art.

VII. CONCLUSION

In this paper, we studied the problem of data security in data

storage in cloud servers. To guarantee the correctness of

users’ data in cloud data storage, we proposed an effectual

and flexible scheme with explicit dynamic data support,

including block revise, erase, and affix. We use erasure-

correcting code in the file distribution preparation to provide

redundancy parity vectors and guarantee the data

dependability. Our scheme accomplishes the integration of

storage correctness insurance and data corruption has been

detected during the storage correctness verification across

the distributed servers. Our scheme is highly efficient and

resilient to Byzantine failure, malicious data modification

attack, and even server colluding attacks. We believe that

data storage security in Cloud Computing, an area full of

challenges and of dominant significance, is still in its infancy

to be identified. We envision several possible directions for

future research on this area. It allows Third Parity Auditor to

audit the cloud data storage without demanding users’ time,

probability.

International Journal For Technological Research In Engineering

Volume 4, Issue 8, April-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1363

REFERENCES

[1] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of

Retrievability: Theory and Implementation,”

Cryptology ePrint Archive, Report 2008/175, 2008,

http://eprint.iacr.org/.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. of CCS ’07,

pp. 598–609, 2007.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and G.

Tsudik, “Scalable and Efficient Provable Data

Possession,” Proc. of SecureComm ’08, pp. 1– 10,

2008.

[4] T. S. J. Schwarz and E. L. Miller, “Store, Forget,

and Check: Using Algebraic Signatures to Check

Remotely Administered Storage,” Proc. of ICDCS

’06, pp. 12–12, 2006.

[5] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows,

and M. Isard, “A Cooperative Internet Backup

Scheme,” Proc. of the 2003 USENIX Annual

Technical Conference (General Track), pp. 29–41,

2003.

[6] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A

High-Availability and Integrity Layer for Cloud

Storage,” Cryptology ePrint Archive, Report

2008/489, 2008, http://eprint.iacr.org/.

[7] S.Sajithabanu and Dr.E.George Prakash Raj, “Data

Storage Security in Cloud” IJCST Vol. 2, Issue 4,

Oct. - Dec. 2011

[8] A. Jules and J. Burton S. Kaliski, “Pors: Proofs of

retrievability for large files,” in Proc. of CCS’07,

Alexandria, VA, October 2007, pp. 584–597.

[9] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Proc. of Asiacrypt’08, volume

5350 of LNCS, 2008, pp. 90–107.

[10] G. Ateniese, R. D. Pietro, L. V. Mancini, and G.

Tsudik, “Scalable and efficient provable data

possession,” in Proc. of Secure Comm’08, 2008, pp.

1–10.

[11] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

“Enabling public verifiability and data dynamics for

storage security in cloud computing,” in Proc. of

ESORICS’09, volume 5789 of LNCS. Springer-

Verlag, Sep. 2009, pp. 355–370.

[12] Juels and J. Burton S. Kaliski, “PORs: Proofs of

Retrievability for Large Files,” Proc. of CCS ’07,

2007.

[13] G. Ateniese, R. D. Pietro, L. V. Mancini, and G.

Tsudik, “Scalable and Efficient Provable Data

Possession,” Proc. of SecureComm ’2008.

[14] John W. Rittinghouse, James F. Ransome, ” Cloud

Computing Implementation, Management, and

Security”, CRC Press 2010 by Taylor and Francis

Group, LLC.

[15] Journal of Theoretical and Applied Information

Technology, “CLOUD COMPUTING”,

www.jatit.org, 2005 – 2009.

[16] Hand, Eric. “Head in the Clouds.”Nature. 25;(2007

Oct).

[17] “Privacy in the Clouds: Risks to Privacy and

Confidentiality from Cloud Computing”, Prepared

by Robert Gellman for the World Privacy Forum

February 23, 2009.

[18] “Advancing cloud computing: What to do now?,

Priorities for Industry and Governments”, World

Economic Forum in partnership with Accenture –

2011.

[19] Security of Cloud Computing Providers Study

Sponsored by CA Technologies Independently

conducted by Ponemon Institute LLC Publication

Date: April 2011

[20] National Institute of Standards and Technology,

“The NIST Definition of Cloud Computing,”

document posted October 2009,

http://csrc.nist.gov/groups/SNS/cloud-computing/.

[21] James Walden, Northern Kentucky University, The

OWASP Foundation, http://www.owasp.org,

“Cloud Computing Security”, February 22nd, 2011.

[22] Cloud Security Alliance(CSA), “Top Threats to

Cloud Computing V1.0”, March 2010,

http://www.cloudsecurityalliance.org/topthreats.

http://eprint.iacr.org/

