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Abstract: This paper presents a novel approach to design 

Flexible computational unit (FCU) exploiting carry save 

arithmetic and dadda multiplier. Earlier projects 

emphasized on designing systems with low power and fast 

operations resulting in increased area. The goal of this 

project is to design DSP system to make the design more 

efficient by proposing Dadda tree multiplier. Utilizing 

Dadda tree multiplier reduces the area required for the 

advisement. As in these modern times, most of the 

electronic systems are adapted to perform digital signal 

processing; the DSP integrated systems have wide range of 

applications. Kernel which is the core of the DSP system 

consists of data flow graph that features the corresponding 

arithmetic operation performed by the system. These DFGs 

basically consist of arithmetic units such as adders, 

multipliers etc that are mapped onto the proposed flexible 

control units which are carry save formatted data. As we 

know that the basic intension of designing integrated 

circuits is to minimize the dimensions of a given circuit. 

This objective is achieved by incorporating dada multiplier 

as multiplier unit of the DSP data flow graph template. This 

implementation shows considerable difference in terms of 

area which further leads to other advantages such as to 

fabricate more number of components onto the resulted 

area. 

Index Terms: Digital signal processing (DSP), Data flow 

graph (DFG), Register Transfer logic (RTL), Template(T), 

Spurious power suppression technique (SPST), Carry save 

arithmetic (CSA). 

 

I. INTRODUCTION 

Modern embedded systems target high-end application 

domains requiring efficient implementations of 

computationally intensive digital signal processing (DSP) 

functions. The incorporation of heterogeneity through 

specialized hardware accelerators improves performance and 

reduces energy consumption [1]. Although application-

specific integrated circuits (ASICs) form the ideal 

acceleration solution in terms of performance and power, 

their inflexibility leads to increased silicon complexity, as 

multiple instantiated ASICs are needed to accelerate various 

kernels. Many researchers have proposed the use of domain-

specific coarse-grained reconfigurable accelerators in order 

to increase ASICs‟ flexibility without significantly 

compromising their performance. High-performance flexible 

data paths have been proposed to efficiently map primitive or 

chained operations found in the initial data-flow graph (DFG) 

of a kernel. The templates of complex chained operations are 

either extracted directly from the kernel‟s DFG or specified  

 

in a predefined behavioral template library. Design decisions 

on the accelerator‟s data path highly impact its efficiency. 

Existing works on coarse-grained reconfigurable data paths 

mainly exploit architecture-level optimizations, e.g., 

increased instruction-level parallelism (ILP). The domain-

specific architecture generation algorithms of [5] and [9] 

vary the type and number of computation units achieving a 

customized design structure. The flexible architectures were 

proposed exploiting ILP and operation chaining. Recently 

aggressive operation chaining is adopted to enable the 

computation of entire sub expressions using multiple ALUs 

with heterogeneous arithmetic features. The aforementioned 

reconfigurable architectures exclude arithmetic optimizations 

during the architectural synthesis and consider them only at 

the internal circuit structure of primitive components, e.g., 

adders, during the logic synthesis. However, research 

activities  have shown that the arithmetic optimizations at 

higher abstraction levels than the structural circuit one 

significantly impact on the datapath performance. In [10], 

timing-driven optimizations based on carry-save (CS) 

arithmetic were performed at the post-Register Transfer 

Level (RTL) design stage. In [11], common subexpression 

elimination in CS computations is used to optimize linear 

DSP circuits. Verma et al. [12] developed transformation 

techniques on the application‟s DFG to maximize the use of 

CS arithmetic prior the actual datapath synthesis. The 

aforementioned CS optimization approaches target inflexible 

datapath, i.e., ASIC, implementations. Recently, a flexible 

architecture combining the ILP and pipelining techniques 

with the CS-aware operation chaining has been proposed. 

However, all the aforementioned solutions feature an 

inherent limitation, i.e., CS optimization is bounded to 

merging only additions/subtractions. A CS to binary 

conversion is inserted before each operation that differs from 

addition/subtraction, e.g.,multiplication, thus, allocating 

multiple CS to binary conversions that heavily degrades 

performance due to time-consuming carry propagations. In 

this brief, we propose a high-performance architectural 

scheme for the synthesis of flexible hardware DSP 

accelerators by combining optimization techniques from both 

the architecture and arithmetic levels of abstraction. We 

introduce a flexible datapath architecture that exploits CS 

optimized templates of chained operations. The proposed 

architecture comprises flexible computational units (FCUs), 

which enable the execution of a large set of operation 

templates found in DSP kernels. The proposed accelerator 

architecture delivers average gains in area-delay product and 

in energy consumption compared to state-of-art flexible 

datapaths , sustaining efficiency toward scaled technologies. 
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II. CARRY-SAVE ARITHMETIC: MOTIVATIONAL 

OBSERVATIONS AND LIMITATIONS 

CS representation  has been widely used to design fast 

arithmetic circuits due to its inherent advantage of 

eliminating the large carry-propagation chains. CS arithmetic 

optimizations rearrange the application‟s DFG and reveal 

multiple input additive operations (i.e., chained additions in 

the initial DFG), which can be mapped onto CS compressors. 

The goal is to maximize the range that a CS computation is 

performed within the DFG. However, whenever a 

multiplication node is interleaved in the DFG, either a CS to 

binary conversion is invoked  or the DFG is transformed 

using the distributive property . Thus, the aforementioned CS 

optimization approaches have limited impact on DFGs 

dominated by multiplications, e.g., filtering DSP 

applications. In this brief, we tackle the aforementioned 

limitation by exploiting the CS to modified Booth (MB) 

recoding each time a multiplication needs to be performed 

within a CS-optimized datapath. Thus, the computations 

throughout the multiplications are processed using CS 

arithmetic and the operations in the targeted datapath are 

carried out without using any intermediate carry-propagate 

adder for CS to binary conversion, thus improving 

performance. 

 

III. FLEXIBLE COMPUTATIONAL UNIT 

Adaptable data paths have  been proposed to efficiently scale 

chained operations found in the initial data-flow graph (DFG) 

of a kernel of the DSP system. The templates of complex 

chained operations are either extracted directly from the 

kernel‟s DFG or specified in a ready-made behavioral 

template library. The stated architecture comprises flexible 

computational units (FCUs), which enable the execution of a 

large set of operation templates found in DSP kernels. The 

proposed accelerator architecture delivers average gains in 

area-delay product and in energy consumption compared to 

state-of-art flexible data paths, sustaining efficiency toward 

scaled technologies. The proposed flexible accelerator 

architecture is shown in Fig. 1. Each FCU operates directly 

on operands and produces data in the same form for direct 

reuse of intermediate results. Each FCU operates on 16-bit 

operands. Such a bit-length is adequate for the most DSP 

datapaths, but the architectural concept of the FCU can be 

straightforwardly adapted for smaller or larger bit-lengths. 

The number of FCUs is determined at design time based on 

the instruction-level parallelism (ILP) and area constraints 

imposed by the designer. The register bank consists of 

scratch registers and is used for storing intermediate results 

and sharing operands among the FCUs. Different DSP 

kernels (i.e., different register allocation and data 

communication patterns per kernel) can be mapped onto the 

proposed architecture using post-RTL data path 

interconnection sharing techniques. The control unit drives 

the entire accelerator architecture (i.e., communication 

between the data port and the register bank, configuration 

words of the FCUs and selection signals for the multiplexers) 

in each clock cycle. 

Data Path 

The structure of the FCU (Fig. 2) has been designed to enable 

high performance flexible operation chaining based on a 

library of operation templates. Each FCU can be configured 

to any of the T1–T5 operation templates in template library. 

 
Fig.1: Flexible accelerator architecture. 

The proposed FCU enables intra-template operation 

chaining by fusing the additions performed before/after 

the multiplication & performs any partial operation 

template of the following complex operations: 

 

W
*
 = A × (X* + Y*) + K*  (1) 

W* = A × K* + (X* + Y*)  (2) 

 
Fig.2: shows a segment of the internal structure of the FCU 

i.e. operational template of the data 

Path specified in equation (1) and (2) 

The following relation holds for all CS data: X
*
 = { X

C
, X

S
} 

=  X
C 

+ X
S
. The operand A is a two‟s complement number. 

The alternative execution paths in each FCU are specified 

after properly setting the control signals of the multiplexers 

MUX1 and MUX2 (Fig. 2). The multiplexer MUX0 outputs 

Y* when CL0 = 0 (i.e., X* + Y* is carried out) or Y* when 

X* − Y* is required and CL0 = 1. The two‟s complement 4:2 

CS adder produces the N* = X* + Y* when the input carry 

equals 0 or the N* = X* − Y* when the input carry equals 1. 

The MUX1 determines if N* (1) or K* (2) is multiplied with 

A. The MUX2 specifies if K* (1) or N* (2) is added with the 

multiplication product. The multiplexer MUX3 accepts the 

output of MUX2 and its 1‟s complement and outputs the 

former one when an addition with the multiplication product 

is required (i.e., CL3 = 0) or the later one when a subtraction 

is carried out (i.e., CL3 = 1). The 1-bit ace for the subtraction 

is added in the CS adder tree. The multiplier comprises a CS-

to-MB module, which adopts a recently proposed technique 

to recode the 17-bit P* in its respective MB digits with 
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minimal carry propagation. The multiplier‟s product consists 

of 17 bits. The multiplier includes a compensation method 

for reducing the error imposed at the product‟s accuracy by 

the truncation technique. However, since all the FCU inputs 

consist of 16 bits and provided that there are no overflows, 

the 16 most significant bits of the 17-bit W* (i.e., the output 

of the Carry-Save Adder (CSA) tree, and thus, of the FCU) 

are inserted in the appropriate FCU when requested. 

 

IV. EXISTING PROJECT 

The existing project implemented adders using carry save 

arithematic as substitute for adders and Modified Booth 

Encoder for multipliers found in the datapath of the FCUs in 

the system kernels. Figure 2 shows implementation of Carry 

Save adders in the internal structure of FCU. But the serious 

drawback of this project was that there was tradeoff between 

power and speed resulting in time consumption. 

FCU with carry save arithmetic implementation 

CS representation has been widely used to design fast 

arithmetic circuits due to its inherent advantage of 

eliminating the large carry-propagation chains. CS arithmetic 

optimizations rearrange the application‟s DFG and reveal 

multiple input additive operations (i.e., chained additions in 

the initial DFG), which can be mapped onto CS compressors. 

The goal is to maximize the range that a CS computation is 

performed within the DFG. However, whenever a 

multiplication node is interleaved in the DFG, either a CS to 

binary conversion is invoked or the DFG is transformed 

using the distributive property. Thus, the aforementioned CS 

optimization approaches have limited impact on DFGs 

dominated by multiplications, e.g., filtering DSP 

applications. 

 
Fig. 3: A 4-bit carry save adder using four full adders and a 

4-bit ripple carry adder. 

In this brief, we tackle the aforementioned limitation by 

exploiting the CS to modified Booth (MB) recoding each 

time a multiplication needs to be performed within a CS-

optimized datapath.  

 
Fig.4: Block diagram of Modified booth multiplier 

Thus, the computations throughout the multiplications are 

processed using CS arithmetic and the operations in the 

targeted datapath are carried out without using any 

intermediate carry-propagate adder for CS to binary 

conversion, thus improving performance. 

 
Fig.  5: carry-save adders and modified booth technique for 

multiplier in FCU. 

 

SIMULATION RESULTS 

 
Fig. 6: output waveforms 

Synthesis Results: 

 
Fig. 7: RTL Schematic 

Design Summary: 

 
Fig. 8: CS adder and MB Multiplier based FCU device 

summary 
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Power Analysis 

 
Fig .9: CS adder and MB multiplier based FCU 

 

V. PROPOSED PROJECT 

Since area parameter is a major concern in the integrated 

circuits, so our extended project exploits dadda multiplier for 

multiplier in FCU. The internal operation in the dadda 

multiplier includes adders exploiting carry save arithmetic. In 

our project as stated earlier, the dadda multiplier is 

implemented in the multiplier unit of the operational template 

found in the data flow graph of the kernel of the DSP system. 

 

FCU with Carry save Arithmetic and Dadda Multiplier 

Implementation 

The Dadda multiplier is a hardware multiplier design 

invented by computer scientist Luigi Dadda in 1965. It is 

similar to the Wallace multiplier, but it is slightly faster (for 

all operand sizes) and requires fewer gates (for all but the 

smallest operand sizes). In fact, Dadda and Wallace 

multipliers have the same 3 steps: Firstly, multiply (logical 

AND) each bit of one of the arguments, by each bit of the 

other, yielding (n*n) results. Depending on the position of the 

multiplied bits, the wires carry different weights. Secondly, 

reduce the number of partial product to two by layers of full 

and half adders. Thirdly, group the wires in two numbers and 

add them with a conventional adder. Fig 11 demonstrates the 

reduction of partial products in a dadda multiplier. 

 
Fig.10: Implementation of carry-save technique for adders 

and dadda technique for multiplier in FCU. 

Algorithm 

 Multiply (that is - AND) each bit of one of the 

arguments, by each bit of the other, yielding N2 

results. 

 Reduce the number of partial products to two layers 

of full and half adders. For this, Dadda reduction 

scheme uses the following algorithm. 

 Let d1 = 2 and dj+1 = [2.dj / 2], where dj is the 

matrix height for the j-th stage from the end. Find 

the largest j such that at least one column of the 

matrix has more than dj bits. 

 Employ (3, 2) and (2, 2) counters to obtain a 

reduced matrix with no more than dj elements in 

any column. c)Until a matrix with only two rows is 

generated. Let j = j-1 and repeat step b  

 Group the wires in two numbers, and add them with 

a conventional adder. 

 

Table. 1 Number of reduction stages for DADDA multiplier 

 
The reduction rules however are as follows: Take any 3 

wires with the same weights and input them into a full adder. 

The result will be an output wire of the same weight and an 

output wire with a higher weight for each 3 input wires. If 

there are 2 wires of the same weight left, and the current 

number of output wires with that weight is equal to 2 

(modulo 3), input them into a half adder. Otherwise, pass 

them through to the next layer.  

Flow Chart 

 
Fig. 11: Flow chart of 16x 16 DADDA Multiplier 
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If there is just 1 wire left, connect it to the next layer. This 

step does only as many adds as necessary, so that the number 

of output weights stays close to a multiple of 3, which is the 

ideal number of weights when using full adders as (3, 2) 

counters. However, when a layer carries at most 3 input wires 

for any weight, that layer will be the last one. In this case, the 

Dadda tree will use half adder more aggressively to ensure 

that there are only two outputs for any weight. Then, the 

second rule is above changes as follows If there are 2 wires 

of the same weight left, and the current number of output 

wires with that weight is equal to 1 or 2 (modulo 3), input 

them into a half adder. Otherwise, pass them through to the 

next layer. III Implementation of multiplier In order to make 

the most effective use of the processing elements, the 

multiplier was implemented as a linear pipeline. It was 

important to ensure that the delay of each processing stage in 

the pipeline was approximately equal so that a „bottleneck‟ 

was not introduced by any individual processing stage. The 

multiplication of an M-bit multiplicand by an N-bit multiplier 

yields an N by M matrix of partial products. The reduction of 

this partial product matrix through the parallel application of 

(3, 2) and (2, 2) counters results in a matrix with a height of 

two. Each (3, 2) counter (full adder) accepts three inputs 

from a given column and produces a sum bit which remains 

in that column and a carry bit which goes into the next more 

significant column. A (2, 2) counter (half adder) accepts two 

inputs from a column and produces a sum bit in the same 

column and a carry bit in the next more significant column. 

The implemented 16 × 16 Dadda multiplier with the help of 

dot diagram is shown in Fig 12 (The notation is taken from in 

which the outputs from a full adder are joined by a solid line, 

and those from half adders are joined by a line with a dash 

through the centre). The Dadda scheme essentially minimizes 

the number of adder stages required to perform the 

summation of the partial products. This is achieved by using 

full and half adders to reduce the number of rows in the 

matrix of bits at each summation stage by a factor of 3/2. 

This results in a final matrix consisting of two rows of bits 

which must be summed using a multiple-bit adder (e.g. a 

ripple-carry or carry look ahead adder).  By way of contrast, 

in a popular multiplication scheme the array, the summation 

proceeds in a more regular, but slower manner, to obtaining 

the summation of the partial products .Using this scheme 

only one row of bits in the matrix is eliminated at each stage 

of the summation. The process of Dadda multiplication is as 

follows: The entire 16 × 16 multiplication requires six stages. 

Always the first stage is partial products stage, which is 

obtained by simple multiplication of multiplicand with 

multiplier. The number of rows (height) present at this stage 

is 16. Now reduce the number of rows further in such a way 

that final stage contains only two rows. For this, Dadda 

introduces a sequence of intermediate matrix heights that 

provides the minimum number of reduction stages for a given 

size multiplier. This sequence determined by working back 

from the final two row matrix, limit the height of each 

intermediate matrix to the largest integer that is no more than 

1.5 times the height of its successor. The proposed multiplier 

16x16 Dadda multiplier requires six reduction stages with 

intermediate matrix heights of 13, 9,6,4,3 and finally 2. The 

single bit in 1st column of the first stage represents the least 

significant bit of the product. From the dot diagram, 2 – row 

stage can be derived from 3 – row stage, and 3 – row stage 

can be derived from 4 – row stage with the help of (3, 2) and 

(2, 2) counters. This is (S-1)th stage, where S is the number 

of stages to implement the multiplier. The 4 – row stage can 

be derived from 6 – row stage. This is (S-2)th stage. The 6 – 

row stage can be derived from 9 – row stage. This can be (S-

3)th stage. The 9 – row stage can be derived from 13 – row 

stage.  

 

 
Fig.12: Example of Dadda reduction on 16x16 multiplier. 

Bits with lower weight are rightmost. 

 

This is (S-4)th stage and then finally 13 – row stage can be 

derived from partial product stage. In passing from partial 

products stage to stage 1, columns are partially reduced, so 

that no more than 13 rows are obtained. From the dot 

diagram, column 14(14th bit) of partial products stage will 

be transformed in a 13 –bits column in stage 1 by 

reproducing 12 bits without transformation and transforming 

only 2 bits by (2, 2) counter. 

Consequently, column 15 ( 15th bit and 14th bit) of the 

partial products stage will be transformed in a 13 – bits 

column in stage 1 by reproducing 12 bits without 

transformation and transforming only 2 bits by a (3, 2) 

counter with the help of the carry generated from the 

previous column. Consequently, only some columns in the 

central portion of partial products stage are actually 

transformed. In passing from stage 1 to stage 2, columns 

having no more than 9 bits are obtained by means of 

applying (2, 2) and (3,2) counters. In succeeding 

transformations, columns with no more than 6, 4, 3 and 2 bits 

respectively are obtained.  



International Journal For Technological Research In Engineering 

Volume 4, Issue 9, May-2017                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2017.All rights reserved.                                                                          1775 

VI. RESULTS 

Simulation Results: 

 
Fig. 13: Simulation of FCU using DADDA 

Synthesis Results: 

 
Fig. 14 RTL Schematic 

Design Summary: 

 
Fig. 15: CS adder and DADDA Multiplier based FCU device 

summary 

Power Analysis: 

 
Fig. 16 Power analysis of CS adder and DADDA multiplier 

based FCU 

Comparisons between MB multiplier and DADDA multiplier 

FCU 

Table. 2 Comparison Table for FCU 

 

VII. CONCLUSION 

Concisely, an FCU architecture was introduced that exploits 

the incorporation of CS arithmetic and Dadda algorithmic 

optimizations to enable fast chaining of additive and 

multiplicative operations. This flexible accelerator 

architecture allows to operate on both conventional two‟s 

complement and CS formatted data operands, thus enabling 

high degrees of computational density to be achieved. 

Theoretical and experimental analyses have shown that the 

extended solution forms an efficient design delivering 

considerable amount in terms of area and minute reduction in 

power. Even if the area required is less it would not have its 

affect on speed when compared to the MB multiplier, these 

advantages can be efficiently utilized in applications such as 

ALUs for designing advanced high speed microprocessors 

and DSP systems as well. 

 

VIII. FUTURE ASPECT 

Flexible accelerator architecture is able to operate on both 

conventional two‟s complement and CS-formatted data. As it 

is the source for performing all ALU operations in kernels of 

the DSP system, as efficient it is the better is the 

performance of the DSP system. Though these systems are 

widely used for a limited range of 16 bit data in many 

applications, these can further increase to more number of 

bits i.e., up to 64-bits. Further, the improved multiplier can 

also be used for designing the low power multi-tap FIR 

filters in DSP applications with suitable tools. 

 

REFERENCES 

[1] P. Ienne and R. Leupers, Customizable Embedded 

Processors: Design Technologies and Applications. 

San Francisco, CA, USA: Morgan Kaufmann, 2007. 

[2] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. 

Lauwereins, “ADRES: An architecture with tightly 

coupled VLIW processor and coarse-grained 

reconfigurable matrix,” in Proc. 13th Int. Conf. 

Field Program. Logic Appl., vol. 2778. 2003, pp. 

61–70. 

[3] P. M. Heysters, G. J. M. Smit, and E.Molenkamp, 

 

  FCU unit  

 

No. of LUT‟S  

 

      Power 

     ( in mw)  

Existing FCU 

unit  

     1472        84 

Proposed 

FCU unit  

     1236        83  



International Journal For Technological Research In Engineering 

Volume 4, Issue 9, May-2017                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2017.All rights reserved.                                                                          1776 

“A flexible and energy-efficient coarse-grained 

reconfigurable architecture for mobile systems,” J. 

Supercomput., vol. 26, no. 3, pp. 283–308, 2003. 

[4] A. Hosangadi, F. Fallah, and R. Kastner, 

“Optimizing high speed arithmetic circuits using 

three-term extraction,” in Proc. Design, Autom. Test 

Eur. (DATE), vol. 1. Mar. 2006, pp. 1–6. 

[5] K. Compton and S. Hauck, “Automatic design of 

reconfigurable domainspecific flexible cores,” IEEE 

Trans. Very Large Scale Integr. (VLSI) Syst., vol. 

16, no. 5, pp. 493–503, May 2008. 

[6] S. Xydis, G. Economakos, and K. Pekmestzi, 

“Designing coarse-grain reconfigurable 

architectures by inlining flexibility into custom 

arithmetic data-paths,“Integr., VLSI J., vol. 42, no. 

4, pp. 486–503, Sep. 2009. 

[7] S. Xydis, G. Economakos, D. Soudris, and K. 

Pekmestzi, “High performance and area efficient 

flexible DSP datapath synthesis,” IEEE Trans. Very 

Large Scale Integr. (VLSI) Syst., vol. 19, no. 3, pp. 

429–442, Mar. 2011. 

[8] G. Ansaloni, P. Bonzini, and L. Pozzi, “EGRA: A 

coarse grained reconfigurable architectural 

template,” IEEE Trans. Very Large Scale Integr. 

(VLSI) Syst., vol. 19, no. 6, pp. 1062–1074, Jun. 

2011. 

[9] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and 

P. Ienne, “Selective flexibility: Creating domain-

specific reconfigurable arrays,” IEEE Trans. 

Comput.-Aided Design Integr. Circuits Syst., vol. 

32, no. 5, pp. 681–694, May 2013. 

[10] T. Kim and J. Um, “A practical approach to the 

synthesis of arithmetic circuits using carry-save-

adders,” IEEE Trans. Comput.- Aided Design 

Integr. Circuits Syst., vol. 19, no. 5, pp. 615–624, 

May 2000. 

[11] A. Hosangadi, F. Fallah, and R. Kastner, 

“Optimizing high speed arithmetic circuits using 

three-term extraction,” in Proc. Design, Autom. Test 

Eur. (DATE), vol. 1. Mar. 2006, pp. 1–6. 


