
International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1770

A NOVEL DESIGN OF AN AREA EFFICIENT FCU USING CS

ADDER AND DADDA MULTIPLIER

Mr. Sudheer Janipalli
1
, Mrs. B Satya Sridevi

2

1
PG Scholar,

2
Sr. Assistant Professor,

Dept of ECE, ADITYA Engineering College, surampalem, E.G Dist A.P.

Abstract: This paper presents a novel approach to design

Flexible computational unit (FCU) exploiting carry save

arithmetic and dadda multiplier. Earlier projects

emphasized on designing systems with low power and fast

operations resulting in increased area. The goal of this

project is to design DSP system to make the design more

efficient by proposing Dadda tree multiplier. Utilizing

Dadda tree multiplier reduces the area required for the

advisement. As in these modern times, most of the

electronic systems are adapted to perform digital signal

processing; the DSP integrated systems have wide range of

applications. Kernel which is the core of the DSP system

consists of data flow graph that features the corresponding

arithmetic operation performed by the system. These DFGs

basically consist of arithmetic units such as adders,

multipliers etc that are mapped onto the proposed flexible

control units which are carry save formatted data. As we

know that the basic intension of designing integrated

circuits is to minimize the dimensions of a given circuit.

This objective is achieved by incorporating dada multiplier

as multiplier unit of the DSP data flow graph template. This

implementation shows considerable difference in terms of

area which further leads to other advantages such as to

fabricate more number of components onto the resulted

area.

Index Terms: Digital signal processing (DSP), Data flow

graph (DFG), Register Transfer logic (RTL), Template(T),

Spurious power suppression technique (SPST), Carry save

arithmetic (CSA).

I. INTRODUCTION

Modern embedded systems target high-end application

domains requiring efficient implementations of

computationally intensive digital signal processing (DSP)

functions. The incorporation of heterogeneity through

specialized hardware accelerators improves performance and

reduces energy consumption [1]. Although application-

specific integrated circuits (ASICs) form the ideal

acceleration solution in terms of performance and power,

their inflexibility leads to increased silicon complexity, as

multiple instantiated ASICs are needed to accelerate various

kernels. Many researchers have proposed the use of domain-

specific coarse-grained reconfigurable accelerators in order

to increase ASICs‟ flexibility without significantly

compromising their performance. High-performance flexible

data paths have been proposed to efficiently map primitive or

chained operations found in the initial data-flow graph (DFG)

of a kernel. The templates of complex chained operations are

either extracted directly from the kernel‟s DFG or specified

in a predefined behavioral template library. Design decisions

on the accelerator‟s data path highly impact its efficiency.

Existing works on coarse-grained reconfigurable data paths

mainly exploit architecture-level optimizations, e.g.,

increased instruction-level parallelism (ILP). The domain-

specific architecture generation algorithms of [5] and [9]

vary the type and number of computation units achieving a

customized design structure. The flexible architectures were

proposed exploiting ILP and operation chaining. Recently

aggressive operation chaining is adopted to enable the

computation of entire sub expressions using multiple ALUs

with heterogeneous arithmetic features. The aforementioned

reconfigurable architectures exclude arithmetic optimizations

during the architectural synthesis and consider them only at

the internal circuit structure of primitive components, e.g.,

adders, during the logic synthesis. However, research

activities have shown that the arithmetic optimizations at

higher abstraction levels than the structural circuit one

significantly impact on the datapath performance. In [10],

timing-driven optimizations based on carry-save (CS)

arithmetic were performed at the post-Register Transfer

Level (RTL) design stage. In [11], common subexpression

elimination in CS computations is used to optimize linear

DSP circuits. Verma et al. [12] developed transformation

techniques on the application‟s DFG to maximize the use of

CS arithmetic prior the actual datapath synthesis. The

aforementioned CS optimization approaches target inflexible

datapath, i.e., ASIC, implementations. Recently, a flexible

architecture combining the ILP and pipelining techniques

with the CS-aware operation chaining has been proposed.

However, all the aforementioned solutions feature an

inherent limitation, i.e., CS optimization is bounded to

merging only additions/subtractions. A CS to binary

conversion is inserted before each operation that differs from

addition/subtraction, e.g.,multiplication, thus, allocating

multiple CS to binary conversions that heavily degrades

performance due to time-consuming carry propagations. In

this brief, we propose a high-performance architectural

scheme for the synthesis of flexible hardware DSP

accelerators by combining optimization techniques from both

the architecture and arithmetic levels of abstraction. We

introduce a flexible datapath architecture that exploits CS

optimized templates of chained operations. The proposed

architecture comprises flexible computational units (FCUs),

which enable the execution of a large set of operation

templates found in DSP kernels. The proposed accelerator

architecture delivers average gains in area-delay product and

in energy consumption compared to state-of-art flexible

datapaths , sustaining efficiency toward scaled technologies.

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1771

II. CARRY-SAVE ARITHMETIC: MOTIVATIONAL

OBSERVATIONS AND LIMITATIONS

CS representation has been widely used to design fast

arithmetic circuits due to its inherent advantage of

eliminating the large carry-propagation chains. CS arithmetic

optimizations rearrange the application‟s DFG and reveal

multiple input additive operations (i.e., chained additions in

the initial DFG), which can be mapped onto CS compressors.

The goal is to maximize the range that a CS computation is

performed within the DFG. However, whenever a

multiplication node is interleaved in the DFG, either a CS to

binary conversion is invoked or the DFG is transformed

using the distributive property . Thus, the aforementioned CS

optimization approaches have limited impact on DFGs

dominated by multiplications, e.g., filtering DSP

applications. In this brief, we tackle the aforementioned

limitation by exploiting the CS to modified Booth (MB)

recoding each time a multiplication needs to be performed

within a CS-optimized datapath. Thus, the computations

throughout the multiplications are processed using CS

arithmetic and the operations in the targeted datapath are

carried out without using any intermediate carry-propagate

adder for CS to binary conversion, thus improving

performance.

III. FLEXIBLE COMPUTATIONAL UNIT

Adaptable data paths have been proposed to efficiently scale

chained operations found in the initial data-flow graph (DFG)

of a kernel of the DSP system. The templates of complex

chained operations are either extracted directly from the

kernel‟s DFG or specified in a ready-made behavioral

template library. The stated architecture comprises flexible

computational units (FCUs), which enable the execution of a

large set of operation templates found in DSP kernels. The

proposed accelerator architecture delivers average gains in

area-delay product and in energy consumption compared to

state-of-art flexible data paths, sustaining efficiency toward

scaled technologies. The proposed flexible accelerator

architecture is shown in Fig. 1. Each FCU operates directly

on operands and produces data in the same form for direct

reuse of intermediate results. Each FCU operates on 16-bit

operands. Such a bit-length is adequate for the most DSP

datapaths, but the architectural concept of the FCU can be

straightforwardly adapted for smaller or larger bit-lengths.

The number of FCUs is determined at design time based on

the instruction-level parallelism (ILP) and area constraints

imposed by the designer. The register bank consists of

scratch registers and is used for storing intermediate results

and sharing operands among the FCUs. Different DSP

kernels (i.e., different register allocation and data

communication patterns per kernel) can be mapped onto the

proposed architecture using post-RTL data path

interconnection sharing techniques. The control unit drives

the entire accelerator architecture (i.e., communication

between the data port and the register bank, configuration

words of the FCUs and selection signals for the multiplexers)

in each clock cycle.

Data Path

The structure of the FCU (Fig. 2) has been designed to enable

high performance flexible operation chaining based on a

library of operation templates. Each FCU can be configured

to any of the T1–T5 operation templates in template library.

Fig.1: Flexible accelerator architecture.

The proposed FCU enables intra-template operation

chaining by fusing the additions performed before/after

the multiplication & performs any partial operation

template of the following complex operations:

W
*
 = A × (X* + Y*) + K* (1)

W* = A × K* + (X* + Y*) (2)

Fig.2: shows a segment of the internal structure of the FCU

i.e. operational template of the data

Path specified in equation (1) and (2)

The following relation holds for all CS data: X
*
 = { X

C
, X

S
}

= X
C

+ X
S
. The operand A is a two‟s complement number.

The alternative execution paths in each FCU are specified

after properly setting the control signals of the multiplexers

MUX1 and MUX2 (Fig. 2). The multiplexer MUX0 outputs

Y* when CL0 = 0 (i.e., X* + Y* is carried out) or Y* when

X* − Y* is required and CL0 = 1. The two‟s complement 4:2

CS adder produces the N* = X* + Y* when the input carry

equals 0 or the N* = X* − Y* when the input carry equals 1.

The MUX1 determines if N* (1) or K* (2) is multiplied with

A. The MUX2 specifies if K* (1) or N* (2) is added with the

multiplication product. The multiplexer MUX3 accepts the

output of MUX2 and its 1‟s complement and outputs the

former one when an addition with the multiplication product

is required (i.e., CL3 = 0) or the later one when a subtraction

is carried out (i.e., CL3 = 1). The 1-bit ace for the subtraction

is added in the CS adder tree. The multiplier comprises a CS-

to-MB module, which adopts a recently proposed technique

to recode the 17-bit P* in its respective MB digits with

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1772

minimal carry propagation. The multiplier‟s product consists

of 17 bits. The multiplier includes a compensation method

for reducing the error imposed at the product‟s accuracy by

the truncation technique. However, since all the FCU inputs

consist of 16 bits and provided that there are no overflows,

the 16 most significant bits of the 17-bit W* (i.e., the output

of the Carry-Save Adder (CSA) tree, and thus, of the FCU)

are inserted in the appropriate FCU when requested.

IV. EXISTING PROJECT

The existing project implemented adders using carry save

arithematic as substitute for adders and Modified Booth

Encoder for multipliers found in the datapath of the FCUs in

the system kernels. Figure 2 shows implementation of Carry

Save adders in the internal structure of FCU. But the serious

drawback of this project was that there was tradeoff between

power and speed resulting in time consumption.

FCU with carry save arithmetic implementation

CS representation has been widely used to design fast

arithmetic circuits due to its inherent advantage of

eliminating the large carry-propagation chains. CS arithmetic

optimizations rearrange the application‟s DFG and reveal

multiple input additive operations (i.e., chained additions in

the initial DFG), which can be mapped onto CS compressors.

The goal is to maximize the range that a CS computation is

performed within the DFG. However, whenever a

multiplication node is interleaved in the DFG, either a CS to

binary conversion is invoked or the DFG is transformed

using the distributive property. Thus, the aforementioned CS

optimization approaches have limited impact on DFGs

dominated by multiplications, e.g., filtering DSP

applications.

Fig. 3: A 4-bit carry save adder using four full adders and a

4-bit ripple carry adder.

In this brief, we tackle the aforementioned limitation by

exploiting the CS to modified Booth (MB) recoding each

time a multiplication needs to be performed within a CS-

optimized datapath.

Fig.4: Block diagram of Modified booth multiplier

Thus, the computations throughout the multiplications are

processed using CS arithmetic and the operations in the

targeted datapath are carried out without using any

intermediate carry-propagate adder for CS to binary

conversion, thus improving performance.

Fig. 5: carry-save adders and modified booth technique for

multiplier in FCU.

SIMULATION RESULTS

Fig. 6: output waveforms

Synthesis Results:

Fig. 7: RTL Schematic

Design Summary:

Fig. 8: CS adder and MB Multiplier based FCU device

summary

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1773

Power Analysis

Fig .9: CS adder and MB multiplier based FCU

V. PROPOSED PROJECT

Since area parameter is a major concern in the integrated

circuits, so our extended project exploits dadda multiplier for

multiplier in FCU. The internal operation in the dadda

multiplier includes adders exploiting carry save arithmetic. In

our project as stated earlier, the dadda multiplier is

implemented in the multiplier unit of the operational template

found in the data flow graph of the kernel of the DSP system.

FCU with Carry save Arithmetic and Dadda Multiplier

Implementation

The Dadda multiplier is a hardware multiplier design

invented by computer scientist Luigi Dadda in 1965. It is

similar to the Wallace multiplier, but it is slightly faster (for

all operand sizes) and requires fewer gates (for all but the

smallest operand sizes). In fact, Dadda and Wallace

multipliers have the same 3 steps: Firstly, multiply (logical

AND) each bit of one of the arguments, by each bit of the

other, yielding (n*n) results. Depending on the position of the

multiplied bits, the wires carry different weights. Secondly,

reduce the number of partial product to two by layers of full

and half adders. Thirdly, group the wires in two numbers and

add them with a conventional adder. Fig 11 demonstrates the

reduction of partial products in a dadda multiplier.

Fig.10: Implementation of carry-save technique for adders

and dadda technique for multiplier in FCU.

Algorithm

 Multiply (that is - AND) each bit of one of the

arguments, by each bit of the other, yielding N2

results.

 Reduce the number of partial products to two layers

of full and half adders. For this, Dadda reduction

scheme uses the following algorithm.

 Let d1 = 2 and dj+1 = [2.dj / 2], where dj is the

matrix height for the j-th stage from the end. Find

the largest j such that at least one column of the

matrix has more than dj bits.

 Employ (3, 2) and (2, 2) counters to obtain a

reduced matrix with no more than dj elements in

any column. c)Until a matrix with only two rows is

generated. Let j = j-1 and repeat step b

 Group the wires in two numbers, and add them with

a conventional adder.

Table. 1 Number of reduction stages for DADDA multiplier

The reduction rules however are as follows: Take any 3

wires with the same weights and input them into a full adder.

The result will be an output wire of the same weight and an

output wire with a higher weight for each 3 input wires. If

there are 2 wires of the same weight left, and the current

number of output wires with that weight is equal to 2

(modulo 3), input them into a half adder. Otherwise, pass

them through to the next layer.

Flow Chart

Fig. 11: Flow chart of 16x 16 DADDA Multiplier

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1774

If there is just 1 wire left, connect it to the next layer. This

step does only as many adds as necessary, so that the number

of output weights stays close to a multiple of 3, which is the

ideal number of weights when using full adders as (3, 2)

counters. However, when a layer carries at most 3 input wires

for any weight, that layer will be the last one. In this case, the

Dadda tree will use half adder more aggressively to ensure

that there are only two outputs for any weight. Then, the

second rule is above changes as follows If there are 2 wires

of the same weight left, and the current number of output

wires with that weight is equal to 1 or 2 (modulo 3), input

them into a half adder. Otherwise, pass them through to the

next layer. III Implementation of multiplier In order to make

the most effective use of the processing elements, the

multiplier was implemented as a linear pipeline. It was

important to ensure that the delay of each processing stage in

the pipeline was approximately equal so that a „bottleneck‟

was not introduced by any individual processing stage. The

multiplication of an M-bit multiplicand by an N-bit multiplier

yields an N by M matrix of partial products. The reduction of

this partial product matrix through the parallel application of

(3, 2) and (2, 2) counters results in a matrix with a height of

two. Each (3, 2) counter (full adder) accepts three inputs

from a given column and produces a sum bit which remains

in that column and a carry bit which goes into the next more

significant column. A (2, 2) counter (half adder) accepts two

inputs from a column and produces a sum bit in the same

column and a carry bit in the next more significant column.

The implemented 16 × 16 Dadda multiplier with the help of

dot diagram is shown in Fig 12 (The notation is taken from in

which the outputs from a full adder are joined by a solid line,

and those from half adders are joined by a line with a dash

through the centre). The Dadda scheme essentially minimizes

the number of adder stages required to perform the

summation of the partial products. This is achieved by using

full and half adders to reduce the number of rows in the

matrix of bits at each summation stage by a factor of 3/2.

This results in a final matrix consisting of two rows of bits

which must be summed using a multiple-bit adder (e.g. a

ripple-carry or carry look ahead adder). By way of contrast,

in a popular multiplication scheme the array, the summation

proceeds in a more regular, but slower manner, to obtaining

the summation of the partial products .Using this scheme

only one row of bits in the matrix is eliminated at each stage

of the summation. The process of Dadda multiplication is as

follows: The entire 16 × 16 multiplication requires six stages.

Always the first stage is partial products stage, which is

obtained by simple multiplication of multiplicand with

multiplier. The number of rows (height) present at this stage

is 16. Now reduce the number of rows further in such a way

that final stage contains only two rows. For this, Dadda

introduces a sequence of intermediate matrix heights that

provides the minimum number of reduction stages for a given

size multiplier. This sequence determined by working back

from the final two row matrix, limit the height of each

intermediate matrix to the largest integer that is no more than

1.5 times the height of its successor. The proposed multiplier

16x16 Dadda multiplier requires six reduction stages with

intermediate matrix heights of 13, 9,6,4,3 and finally 2. The

single bit in 1st column of the first stage represents the least

significant bit of the product. From the dot diagram, 2 – row

stage can be derived from 3 – row stage, and 3 – row stage

can be derived from 4 – row stage with the help of (3, 2) and

(2, 2) counters. This is (S-1)th stage, where S is the number

of stages to implement the multiplier. The 4 – row stage can

be derived from 6 – row stage. This is (S-2)th stage. The 6 –

row stage can be derived from 9 – row stage. This can be (S-

3)th stage. The 9 – row stage can be derived from 13 – row

stage.

Fig.12: Example of Dadda reduction on 16x16 multiplier.

Bits with lower weight are rightmost.

This is (S-4)th stage and then finally 13 – row stage can be

derived from partial product stage. In passing from partial

products stage to stage 1, columns are partially reduced, so

that no more than 13 rows are obtained. From the dot

diagram, column 14(14th bit) of partial products stage will

be transformed in a 13 –bits column in stage 1 by

reproducing 12 bits without transformation and transforming

only 2 bits by (2, 2) counter.

Consequently, column 15 (15th bit and 14th bit) of the

partial products stage will be transformed in a 13 – bits

column in stage 1 by reproducing 12 bits without

transformation and transforming only 2 bits by a (3, 2)

counter with the help of the carry generated from the

previous column. Consequently, only some columns in the

central portion of partial products stage are actually

transformed. In passing from stage 1 to stage 2, columns

having no more than 9 bits are obtained by means of

applying (2, 2) and (3,2) counters. In succeeding

transformations, columns with no more than 6, 4, 3 and 2 bits

respectively are obtained.

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1775

VI. RESULTS

Simulation Results:

Fig. 13: Simulation of FCU using DADDA

Synthesis Results:

Fig. 14 RTL Schematic

Design Summary:

Fig. 15: CS adder and DADDA Multiplier based FCU device

summary

Power Analysis:

Fig. 16 Power analysis of CS adder and DADDA multiplier

based FCU

Comparisons between MB multiplier and DADDA multiplier

FCU

Table. 2 Comparison Table for FCU

VII. CONCLUSION

Concisely, an FCU architecture was introduced that exploits

the incorporation of CS arithmetic and Dadda algorithmic

optimizations to enable fast chaining of additive and

multiplicative operations. This flexible accelerator

architecture allows to operate on both conventional two‟s

complement and CS formatted data operands, thus enabling

high degrees of computational density to be achieved.

Theoretical and experimental analyses have shown that the

extended solution forms an efficient design delivering

considerable amount in terms of area and minute reduction in

power. Even if the area required is less it would not have its

affect on speed when compared to the MB multiplier, these

advantages can be efficiently utilized in applications such as

ALUs for designing advanced high speed microprocessors

and DSP systems as well.

VIII. FUTURE ASPECT

Flexible accelerator architecture is able to operate on both

conventional two‟s complement and CS-formatted data. As it

is the source for performing all ALU operations in kernels of

the DSP system, as efficient it is the better is the

performance of the DSP system. Though these systems are

widely used for a limited range of 16 bit data in many

applications, these can further increase to more number of

bits i.e., up to 64-bits. Further, the improved multiplier can

also be used for designing the low power multi-tap FIR

filters in DSP applications with suitable tools.

REFERENCES

[1] P. Ienne and R. Leupers, Customizable Embedded

Processors: Design Technologies and Applications.

San Francisco, CA, USA: Morgan Kaufmann, 2007.

[2] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R.

Lauwereins, “ADRES: An architecture with tightly

coupled VLIW processor and coarse-grained

reconfigurable matrix,” in Proc. 13th Int. Conf.

Field Program. Logic Appl., vol. 2778. 2003, pp.

61–70.

[3] P. M. Heysters, G. J. M. Smit, and E.Molenkamp,

 FCU unit

No. of LUT‟S

 Power

 (in mw)

Existing FCU

unit

 1472 84

Proposed

FCU unit

 1236 83

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1776

“A flexible and energy-efficient coarse-grained

reconfigurable architecture for mobile systems,” J.

Supercomput., vol. 26, no. 3, pp. 283–308, 2003.

[4] A. Hosangadi, F. Fallah, and R. Kastner,

“Optimizing high speed arithmetic circuits using

three-term extraction,” in Proc. Design, Autom. Test

Eur. (DATE), vol. 1. Mar. 2006, pp. 1–6.

[5] K. Compton and S. Hauck, “Automatic design of

reconfigurable domainspecific flexible cores,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol.

16, no. 5, pp. 493–503, May 2008.

[6] S. Xydis, G. Economakos, and K. Pekmestzi,

“Designing coarse-grain reconfigurable

architectures by inlining flexibility into custom

arithmetic data-paths,“Integr., VLSI J., vol. 42, no.

4, pp. 486–503, Sep. 2009.

[7] S. Xydis, G. Economakos, D. Soudris, and K.

Pekmestzi, “High performance and area efficient

flexible DSP datapath synthesis,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 19, no. 3, pp.

429–442, Mar. 2011.

[8] G. Ansaloni, P. Bonzini, and L. Pozzi, “EGRA: A

coarse grained reconfigurable architectural

template,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 19, no. 6, pp. 1062–1074, Jun.

2011.

[9] M. Stojilovic, D. Novo, L. Saranovac, P. Brisk, and

P. Ienne, “Selective flexibility: Creating domain-

specific reconfigurable arrays,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol.

32, no. 5, pp. 681–694, May 2013.

[10] T. Kim and J. Um, “A practical approach to the

synthesis of arithmetic circuits using carry-save-

adders,” IEEE Trans. Comput.- Aided Design

Integr. Circuits Syst., vol. 19, no. 5, pp. 615–624,

May 2000.

[11] A. Hosangadi, F. Fallah, and R. Kastner,

“Optimizing high speed arithmetic circuits using

three-term extraction,” in Proc. Design, Autom. Test

Eur. (DATE), vol. 1. Mar. 2006, pp. 1–6.

