
International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1870

DESIGN OF DYNAMIC MODEL FOR TEMPORAL PROTOCOL

Arpita Mathur
1
, Ajay Mathur

2

1
Department of Computer Science, Lachoo Memorial College of Sc. & Tech., A-Sector, Shastri Nagar,

Jodhpur (India)
2
Department of Computer Science, Govt. Polytechnic College, Jodhpur (India)

Abstract: The need of protocols in today’s environment

increases as the networks explores in order to fix livelocks

and deadlocks in protocol. In this paper I will explain how

model based testing can be used to test the protocols that

shows sequential (time based) temporal relationship

between entities based on UML sequence diagram. Here

dynamic model for protocol is validated and then it detects

the errors which were seeded in temporal relationship.

I. EXPERIMENTAL SETUP

Validation of non-functional and functional properties of the

temporal protocols during the early stages of design and

development is important to reduce cost resulting from

protocol anomalies, design errors like deadlock or livelock

situations and/or violations of time constraints. The MBT

approach is well suited to test these protocols. UML with its

several diagrams supports techniques to overcome the

aforementioned complexities. In this work a protocol

specification mechanism is formulated for temporal (time

based) protocols based on sequence diagram of UML to show

how different entities interact with each other. We have

considered a registration protocol here for testing the

dynamic model for protocols and collected data for analysis.

Figure 6.1 shows the sequence diagram for the registration

protocol. Here remote client, remote server and email sender

are the three entities. The client creates connection to the

server. The server responds with a message to the client.

During registration process email address is sent from client

to the server. The server generates the password, creates a

user record and then email the password to the email address.

The server then sends a response to the user that the

password will be emailed to him in an email.

Figure 1: Sequence diagram for registration protocol

The temporal relationship between entities in registration is

shown in figure 6.2. At time t0 client sends message number

1 which is received by server at time t1. The server then

sends message number 2 to client which is received at time

t2. In a similar fashion other messages are sent by one entity

and received by another shown in diagram.

Table 1 gives relational operators and the code used in table

to show the temporal relationship. Temporal relationship is

shown in Table 2 and table 3 is the message sequence matrix.

In this work these three tables together are used for protocol

specification mechanism formulated for temporal protocols.

Temporal relation table and message sequence matrix are

made for the registration protocol taken as example here.

Figure 2: Temporal relation between entities

Table 1: Operator Code table

Operator Code

X 0

= = 1

!= 2

< 3

<= 4

> 5

>= 6

Table 2: Temporal Relationship (TR)

International Journal For Technological Research In Engineering

Volume 4, Issue 9, May-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 1871

Only lower triangular matrix is used in table 6.2 as other

values can be found as the complements. For example, here

t[1] > t[0] so t[0] <= t[1] and t[6] >t[7] then t[7] >= t[6] i.e.

TR[0][1] is complement of TR[1][0] and TR[7][6] is

complement of TR[6][7]. TR[2][0] depicts t[2] is

independent of t[0]. X stands for don’t care or independent

of.

Similarly TR[4][2] and TR[8][7] depicts t[4] and t[8] are

independent of t[2] and t[7] respectively.

Table 3 gives the detail of what messages are sent or received

(0/1) by which entity and at what time interval. For example,

the first row shows message number 1 is sent by entity 0 at

time interval t[0] and second row says message number 1 is

received by entity 1 at time t[1]. Similarly, seventh row

shows message number 4 is sent by entity 1 at time t[6] and

row six says this message is received by entity 2 at time t[7].

Table 3 : Message Sequence Matrix

This message sequence matrix is input to the dynamic model

for temporal protocols to send and receive messages using

object threads. These threads are synchronized. We have

used Java to implement this dynamic model as it supports

multithreading and thread synchronization which are used to

represent concurrent entities.

II. BLOCK DIAGRAM FOR THE EXPERIMENT

Figure 3 Block diagram for testing the proposed protocol

specification model

As shown in figure 5 in this experiment we are giving

random input to our proposed protocol specification and to

the dynamic model for protocol (oracle). The outputs of

proposed model and dynamic model are then compared. If

the outputs of oracle and proposed model match it is implied

that proposed protocol specifications are valid else it implies

proposed protocol specifications are invalid.

III. CONCLUSION

A protocol specification mechanism was developed which

gives the temporal relationships and the message sequence.

The proposed dynamic model and temporal relationship may

be validated through model based testing. The experiment

may be conducted on protocol specification by giving

random inputs to the static model/temporal relationship and

dynamic model. Hence, the ability of dynamic model to

validate a protocol may be proven.

REFERENCES

[1] Glenford J. Myers, The Art of Software Testing,

second edition, John Wiley & Sons, Inc., 2004,

ISBN 0-471-46912-2.

[2] Practical Software Testing, A Process-Oriented

Approach, Ilene Burnstein, Springer-Verlag New

York, Inc.,2003, ISBN 0-387-95131-8.

[3] Software Testing and Continuous Quality

Improvement, Second Edition, William E. Lewis,

Auerbach publications, ISBN 0-8493-2524-2.

[4] IEEE Standard Glossary of Software Engineering

Terminology (Std610.12-1990), Copyright 1990 by

IEEE.

[5] UML based Test Specification for Communication

Systems, A Methodology for the use of MSC and

IDL in Testing, Dissertation, 2004

[6] H. Balzert, Software Management, volume 2, first

edition, 1998, ISBN 3827400651.

[7] Kaner, C., J. Falk, & H. Nguyen, 1999, Testing

Computer Software, Wiley Computer Publishing,

second edition, ISBN 0471358460.

[8] E.J. Weyuker, “On Testing Non-testable Programs”,

The Computer Journal, vol. 25, no.4, pp. 465—470,

1982.

[9] H. Robinson,”Graph Theory Techniques in Model-

Based Testing”, 16
th

 International Conference and

Exposition on Testing Computer Software,

[10] I. K. El-Far, & J. A. Whittaker, “Model-based

Software Testing”, Encyclopedia on Software

Engineering, Volume 1. New York, USA:, John

Wiley & Sons Inc, 2001. pp. 825-837, ISBN 0-471-

21008-0.

[11] Mikko Aleksi Makinen, “Model Based Approach to

Software Testing”, Master’s Thesis submitted in

partial fulfillment of the requirements for the degree

of Master of Science in Technology May 22, 2007

