
International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2003

FPGA IMPLEMENTATION OF POWER EFFICIENT SINGLE

PRECISION BINARY FLOATING POINT PROCESSOR

Ankit Pandya
1
, Nitesh Dodkey

2
, Niraj Umale

3

Dept. of Electronics and Communication Engineering, Surabhi group of institution, India

Abstract: The use of floating point unit has lot of

application in real time embedded systems. Algorithms like

fast Fourier transform(FFT) from the digital signal

processing (DSP) domain often make extensive use of

floating-point arithmetic. This paper presents the design

and implementation of an efficient single precision binary

floating-point processor in FPGA. The operations offered

are floating point addition, floating subtraction, integer

addition, integer subtraction, floating point multiplication

and integer multiplication. Column bypass multiplication is

used to implement multiplier for lower power consumption.

Also hardware sharing technique is used for lower

resources usage.

Keywords: ALU, Low Power, Dynamic Power, Column

bypass technique, FPGA.

I. INTRODUCTION

Floating point unit is the core process in any DSP application

and optimizing the floating point unit will improve the

performance of overall application. Binary floating point unit

is used in almost all the DSP applications that we are using

today. IEEE has given a standard called IEEE P754 standard

for floating point numbers, the two most commonly used

formats are single precision format (32 bit) and double

precision format (64 bit), in this work we have used single

precision format for representing binary floating numbers.

Figure 1 shows the single precision format. In single

precision format first 23 bits (0 - 22) are used to represent

mantissa, in binary floating point representation 1additional

bit is concatenated as MSB in mantissa for normalization.

Next 8 bits (23 - 30) are used to represent exponent, this

exponent is biased to 127 so that the exponent never becomes

negative. And the last bit (31) is used to represent sign; 1 for

negative and 0 for positive numbers [1,2].

32 bits (0 - 31)

1 bit 8 bits 23 bits

Sign Exponent Mantissa

Figure 1. IEEE single precision format 32 bit format for

binary floating point numbers

In this work we have implemented a single precision binary

floating point unit which can perform six operations: floating

point addition, floating point subtraction, floating point

multiplication, integer addition, integer subtraction and

integer multiplication. We have used hardware sharing

technique for performing subset operations and column

bypass multiplier for lower power consumption.

II. BINARY FLOATING POINT ARITHMETIC & LOGIC

UNIT

Figure 2 shows the high level block diagram of floating point

arithmetic point unit. 32 bit IEEE P754 numbers is assigned

to “apkt” and “bpkt”, the operation to be selected is assigned

to the “operation” input of the machine and to synchronize

the process clock is assigned to “clk” input of the machine.

Table 1 shows the operation to be performed over the

machine.

Figure 2. High level block diagram of binary floating point

arithmetic and logic unit

Table 1: Operation selection table

S.no Operation Operation to be performed

1 000 Floating point addition

2 001 Floating point Subtraction

3 010 Integer addition

4 011 Integer subtraction

5 100 Floating point multiplication

6 101 Integer multiplication

The inputs “apkt” and “bpkt” is applied to the binary floating

point adder_subtraction unit BFP_ADD_SUB and binary

floating point multiplier unit BFP_MUL. BFP_ADD_SUB

can perform four operation: binary floating addition, binary

floating point subtraction, integer addition and integer

subtraction, the operation to be performed is instructed via

“operation_add_sub” signal. BFP_MUL can perform two

operation binary floating point multiplication and integer

multiplication, the operation to be performed is instructed via

“operation_mul” signal. Output multiplexer selects the

output from the two units depending upon the operation

input.

BFP_ADD_SUB BFP_MUL

OPERATION

SELECT

MODULE

Operation_mul

{1}

Operation_add

_sub{2}

CLK{1}

APKT{32}

BPKT{32}

OPERATION{3}

Opkt_fpa_S {32}

Opkt_mul {32}

OPKT {32}

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2004

III. BINARY FLOATING POINT ADDER

SUBTRACTOR UNIT

Figure 3 shows the algorithm for floating point

addition/subtraction.

Step 1: Decode the inputs apkt and bpkt to obtain

 (as,aE,am) and (bs,bE,bm)

Step 2: Determine effective operation (EOP)

If operation = FPA then EOP <= As XOR Bs; else EOP <=

not (As xor Bs)

EOP = 0 Floating Point Addition

EOP = 1 Floating Point Subtract

Step 3: if apkt < bpkt, then determine large and small number

Step 4: Calculate d <= exp_large – exp_small

Step 5: Shift right „mant_small‟ by d;mant_small_shifted

Step 6: Compute rma_unnormalized <= mant_large +

mant_small_shifted (if EOP = 0)

Else

Compute rms_unormalized <= mant_large – mant_small (if

EOP = 1);

Step 7: Normalize rma_unnormalized; rma_normalized &

rma_exp and normalize rms_unnormalized; rms_normalized

& rs_exp

Step 8:

if apkt >= bpkt then

RA_sign <= as;

RS_sign <= as;

else

RA_sign <= bs;

RS_sign <= not bs;

Step 9: Encode to IEEE P754-2008 format

Figure 3. Binary Floating Point addition/subtraction

algorithm

Figure 4. Combined floating point & Integer adder subtractor

unit

Figure 4 shows the combined floating point & integer adder

subtractor unit. if the selected operation is integer addition

then the 24 bits of apkt(23:0) and bpkt(23:0) are directly

applied to the adder, rma_unormalized is the final output

available at opkt(23:0). Similarly if the selected operation is

subtraction then the 24 bits of apkt(23:0) and bpkt(23:0) are

directly applied to the subtractor, rms_unormalized is the

final output available at opkt(23:0). If the selected operation

is floating point addition then the algorithm of figure 3 is

followed. Step 1 decoding is performed by input decoders

DEC_A and DEC_B. Effective operation is determined by

operation select unit step 2. Step 3 comparison is performed

by COMPARATOR, the smaller mantissa is shifted by d by

SHIFTER; step 4 & step 5. Step 6 is performed by either

adder or subtractor depending on EOP. Step 7 normalization

is performed by NORMALIZOR. Step 8 is implemented by

SIGN GEN. Step 9 is implemented by output multiplexer.

IV. BINARY FLOATING MULTIPLIER UNIT

Figure 5 shows the binary floating point multiplication

algorithm.

Algorithm for Binary floating point multiplication

Step 1: Extract As, Am, Be, Bs, Bm, Be

Step 2: Ops <= As XOR Bs

Step 3: Ope <= Ae + Be – 127

Step 4: Product <= Am * Bm

Step 5: Truncate product and the normalize to produce opm

Step 6:Encode result data in IEEE P754.

Figure 5. Binary floating point multiplication algorithm

Figure 6. Combined floating point & integer multiplier

Figure 6 shows the internal architecture of combined floating

point & integer multiplier. If the selected operation is integer

multiplication then 24 bits of apkt(23:0) and bpkt(23:0) is

directly assigned to column multiplier COLUMN_MUL and

32 bits of product is assigned to the output port opkt. If the

selected operation is binary floating point multiplication then

algorithm of figure 5 is followed. Decoding is implemented

using two decoders DEC_A and DEC_B. Result exponent

ope is calculated using EXP_CALC unit. Output sign is

calculated by simply XORing the two sign inputs. The

DEC_A DEC_B

COMPARATOR

SHIFTER

a_s a_e
a_m

b_s b_e

b_m

apkt bpkt

Sign_large

exp_large

mant_large sign_small

exp_small
mant_small

mant_small

_shifted

ADDER

NORMALIZER

Mant_large

Apkt{23:0}

Mant_small

_shifted Bpkt{23:0}

Rma_unnormalized

Rma_normalized

SUBTRACTOR

NORMALIZER

Mant_large

Apkt{23:0}

Mant_small

_shifted Bpkt{23:0}

Rms_unnormalized

Rms_normalized Rma_exp Rma_exp

OPERATION

SELECT

SIGN GEN

apkt bpkt as bs

RA_sign RS_sign

RA_SIGN RS_SIGN Rma_normalized
Rms_normalized

Rma_

unnormalized

Rms_

unnormalized

Rma_

EXP
RS_EXP

opkt

as

bs

OPERATION

DEC_A

APKT

as ae am

DEC_B

BPKT

bs be bm

COLUMN_MUL

am Apkt{23:0}
bm

Bpkt{23:0}

Opm <= product{46:24}

Product{47:0}

opm

EXP_CALC

ae be

ope

XOR

as bs

ops

ope opm ops Product{31:0}

OPKT

operation

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2005

mantissa multiplication is implemented by low power column

bypass multiplier. The output of the floating point multiplier

needs to be converted into IEEE P754 format, so the output

of the column bypass multiplier is truncated and exponent is

updated accordingly.

The performance of fixed point multiplier unit dominates the

performance of overall floating point multiplier unit. In this

work our focus was to reduce the dynamic power

consumption of design so we have opted column bypass

multiplier.

Figure 7. Column Bypass Multiplier

Consider an array multiplier [3], which has many full adders

it, when one of the two bits is zero the resultant sum, is same

as the other bit. In simple array multiplier this zero is added

and this causes unwanted switching inside the full adder.

Bypass techniques [10], uses this property of full adder and

suppress unwanted switching, this switching is the cause of

dynamic power consumption so by reducing this switching

dynamic power consumption can be reduced. Column bypass

multiplier as shown in figure 3 is a bypass method which is

used to reduce unwanted switching of full adder and this in-

turn reduces dynamic power consumption. In our design we

have used a 24 bit column bypass multiplier. The advantage

of choosing this architecture is suppressing unwanted

switching inside the multiplier unit. The column addition can

be bypassed, when the bit of multiplicand, yi is 0, 0 ≤ i ≤ n –

2. This causes all partial products yixi = 0, 0 ≤ j ≤ n – 1, thus

all full adders can be disabled in the ith column. This reduces

the unwanted switching and in turn reduces the dynamic

power consumption [8].

V. RESULTS

The design shown in this paper is targeted for Xilinx Virtex 5

device. Table 2 shows the device utilization summary.

Table 2: Device Utilization Summary

Design Parameter
Proposed

Work
[15]

Adder
Slice LUTs 24 48

Delay 9.838ns 23ns

Multiplier
Slice LUTs 860 1165

Delay 16.641ns 22.61ns

Binary Floating

Point Add/Sub

Slice LUTs 225 NA

Delay 8.196ns NA

Binary Floating

Point Multiplier

Slice LUTs 912 NA

Delay 5.745ns NA

Combined

Floating Point

Unit

Slice LUTs 1537 NA

Delay 14.47ns NA

VI. CONCLUSION

In this work binary floating point processor is developed and

implemented on Virtex 5 device. Six operations can be

performed using the proposed unit. It can be observed form

table 2 device utilization summary that major portion of the

resources is obtained by multiplier, hence in this work we

have used Column bypass multiplier in addition with Vedic

multiplier to reduce the area and power consumption. It can

also be observed form the device utilization summary that

proposed design is better in terms of resource usage.

REFERENCES

[1] IEEE 754-2008, IEEE Standard for Floating-Point

Arithmetic, 2008.

[2] Brian Hickmann, Andrew Krioukov, and Michael

Schulte, Mark Erle,”A Parallel IEEE 754 Decimal

Floating-Point Multiplier,” In 25th International

Conference on Computer Design ICCD, Oct. 2007.

[3] R Anitha and V Bagyaveereswan “Braun's

Multiplier Implementation using FPGA with

Bypassing Techniques” International journal of

VLSI design and communication system (VLSICS)

vol2, no 3. September 2011.

[4] C.N. Marimuthu, P. Thangaraj and Aswathy

Ramesan “Low power shift and add multiplier

design” International jaournal of computer scince

and information technology 2.3 (2010) 12-15.

[5] Aniruddha Kanhe, Shishir Kumar Das and Ankit

Kumar Singh “Design and implementation of

floating point multiplier based on vedic

multiplication technique ” International Conference

on communication, information & computing

technology (ICCICT), oct 2011 IEEE.

[6] Fadavi-Ardekani “M*N Booth encoded multiplier

generator using optimized Wallace trees” IEEE

transactions on very large scale integration (VLSI)

systems, vol1 issue 2, june 1993 pp 120-125.

[7] Shanbang N.R. “Parallel implementation of a 4*4

bit multiplier using a modified Booth‟s algorithm”

IEEE journal of solid state circuits vol 23 issue 4

Aug 1988 pp 1010-1013.

[8] Ming-chen Wen, Sying-Jyan Wang and Yen-Nan

Lin “Low power multiplier with column bypassing”

Internation symposium on circuits and systems,

may 2005 vol. 2 pp 1638-1641.

[9] S. S. Kerur, Prakash Narchi, Jayashree C N, Harish

M Kittur, Girish V A, “Implementation of Vedic

Multiplier for Digital Signal Processing,”

International Journal of Computer Applications

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2006

(IJCA) 2011.

[10] Jun-ni Ohban, Moshnyaga V.G. and Inoue K

“Multiplier energy reduction through bypassing of

partial products” 2002 Asia-pacific conference on

circuits and systems, vol. 2 pp 13-17.

[11] Kavita Khare, R.P.Singh, Nilay Khare,”Comparison

of pipelined IEEE-754 standard floating point

multiplier with unpipelined multiplier” Journal of

Scientific & Industrial Research Vol.65, pages 900-

904 November 2006.

[12] Anna Jain, Baisakhy dash and Ajit Kumar Panda

“FPGA design of fast 32-bit floating point multiplier

unit”.

[13] Manish Kumar Jaiswal and Ray C.C. Cheung

“Area-Efficient FPGA implementation of quadruple

precision floating point multiplier” 26th

International parallel and distributed processing

symposium workshop and Phd forum, IEEE

computer society, 2012.

[14] Syed Ershad Ahmed, Sibi Abraham, Sreehari

Veeramanchaneni and Moorthy Muthukrishan and

M.B. Srinivas “A modified Twin Precision

Multiplier with 2D Bypassing technique”

International Symposium on electronic system

design, IEEE computer society 2012.

[15] Lasith K K, Anoop Thomas “Efficient

Implementation Of Single Precision Floating Point

Processor In FPGA” AICERA-2014 iCMMD.

