
International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2233

USING FUZZY LOGIC IN AUTOMATED VEHICLE CONTROL

Navdeep Kaur
1
, Ms. Sana Tak

2

1
Enrollment No.:- C2IMT(CS)100009,

2
Assisstant Professor in CSE Deptt.

Kalinga University, Raipur (C.G.)

ABSTRACT: Automated versions of a heavily-produced

vehicle uses fuzzy logic techniques to both address common

challenges and incorporate human procedural knowledge

into the vehicle managing algorithms. In-vehicle computing

has been largely relegated to auxiliary tasks such as

regulating cabin temperature, opening doors, and

monitoring fuel, oil, and battery-charge levels. However,

computers are increasingly assuming driving-related tasks

in some commercial models. Among those tasks are:

maintaining a reference velocity or keeping a safe distance

from other vehicles; improving night vision with infrared

cameras; and building maps and providing alternative

routes.

I. INTRODUCTION

Still, many traffic situations remain complex and difficult to

manage, particularly in urban settings. The driving task

belongs to a class of problems that depend on underlying

systems for logical reasoning and dealing with uncertainty.

So, to move vehicle computers beyond monitoring and into

tasks related to environment perception or driving, we must

integrate aspects of human intelligence and behaviors so that

vehicles manage driving actuators in a way similar to

humans. This is the motivation behind the AUTOPIA

program, a set of national research projects in Spain.

AUTOPIA has two primary objectives: First, we want to

implement automatic driving using real, mass-produced

vehicles tested on real roads. Although this objective might

be called ―utopian‖ at the moment, it’s a great starting point

for exploring the future. Our second aim is to develop our

automated system using modular components that can be

immediately applied in the automotive industry. AUTOPIA

builds in the Instituto de Automatica Industrail’s extensive

experience developing autonomous robots and fuzzy control

systems and the Universidad de Alcala de Henares’s

knowledge of artificial vision.

Automated-Vehicle Equipment:-

Fig 1 shows two mass-produced electric Citroen Berlingo

vans, which we’ve automated using an embedded fuzzy-

logic-based control system to control their speed and

steering. The system’s main sensor inputs are a

CCD(Charged Couple Device) color camera and a high-

precision global positioning system. Through these, the

system controls the vehicle-driving actuators-that is, the

steering, throttle, and brake pedals. Both vehicles include an

onboard PC-based computer, a centimetric, real-time

kinematic differential GPS(RTK DGPS); Wireless LAN

support; two servomotors; and an analog/digital I/O card. We

added a vision system in another computer connected to the

control computer. Fig 2 shows the control system that we

developed to handle all these devices.

Figure 1. The AUTOPIA testbed vehicles. An embedded

fuzzy-logic-based control system controls both speed and

steering in each Citroën Berlingo.

The computer drives the vans using two fuzzy-logic-based

controllers: the steering(lateral) control and the

speed(longitudinal) control. To automate the steering, we

installed a DC servomotor in the steering wheel column. The

Berlingo has an electronic throttle control, so we shortened

the electronic circuit to actuate the throttle using an analog

output card. The brale pedal is fully mechanical; we

automated it using a pulley and a DC servomotor. We

equipped the transmission with an electronic gearbox with

forward and reverse selection. We automated this using a

digital I/O card that sends the correct gear to the internal

vehicle computer. We designed our driving area to emulate

an urban environment because automatic urban driving is

one of ITS’s less researched topics.

Figure 2. The AUTOPIA system control structure. The

sensorial equipment supplies the necessary data to the fuzzy-

logic-based guidance system, which decides the optimal

control signals to manage the vehicle actuators (steering

wheel, throttle and brake).

II. GUIDANCE SYSTEM

We modeled the guidance system using fuzzy variables and

rules. In addition to the steering wheel and vehicle velocity

functionalities, we also consider variables that the system

can use in adaptive cruise control(ACC) and overtaking

capabilities. Among these variables are the distance to the

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2234

next bend and the distance to the lead vehicle(that is, any

vehicle driving directly in front of the automated vehicle).

Car driving is a special control problem because

mathematical models are highly complex and can’t be

accurately linearized. We use fuzzy logic because it’s a well-

tested method for dealing with this kind of system, provides

good results, and can incorporate human procedural

knowledge into control algorithms.

Steering Control:-

The steering control system’s objective is to track a

trajectory. To model lateral and angular tracking deviations

perceived by a human driver, we use two fuzzy variables :

Lateral_Error and Angular_Error. These variables represent

the difference between the vehicle’s current and correct

position and its orientation to a reference trajectory.

Both variables can take left or right linguistic values.

Angular_Error represents the angle between the orientation

and vehicle velocity vectors. If this angle is

counterclockwise, the Angular_Error value is left. If the

angle is clockwise, the Angular_Error value is right.

Lateral_Error represents the distance from the vehicle to the

reference trajectory. If the vehicle is positioned on the

trajectory’s left, the Lateral_Error value is left; it’s right if the

vehicle is on the right.

We compute the variables’ instantaneous value using the

DGPS data and a digital environment map. The fuzzy output

variable is Steering_Wheel and indicates which direction the

system must turn the steering wheel to correct the input

errors. Again, the variable also has left and right linguistic

values. The value is left if the steering wheel must turn

counterclockwise, and right if it must turn clockwise. We

define the fuzzy sets that define the left and right values in an

interval of -540 degrees and 540 degrees.

As with human behavior, our guidance system works

differently for tracking lanes or turning on sharp bends.

When travelling along a straight road, people drive at

relatively high speeds while gently turning the steering

wheel. In contrast, on sharp bends, they rapidly reduce speed

and quickly turn the steering wheel. We emulate such

behavior by changing the membership function parameters of

the Lateral_Deviation, Angular_Deviation, and

Steering_Wheel linguistic variables. To represent the human

procedural knowledge in the driving task, we need only two

fuzzy rules. These rules tell the fuzzy inference motor how to

relate the fuzzy input and output variables:

If Angular_Error left OR Lateral_Error left THEN

Steering_Wheel right

IF Angular_Error right OR Lateral_Error right THEN

Steering_Wheel left

Although these rules are simple, they generate results that are

close to human driving. The rules are the same for all

situations, but the definition of the fuzzy variables’ linguistic

values change. Fig 3 shows this feature in the membership

function definition for Lateral_Error and Angular_Error. Figs

3a and 3b show the degree of truth for the input error values

in straight-path tracking situations. This definition lets the

system act quickly when trajectory deviations occur-again in

keeping with human behavior.

 To prevent accidents, we must limit the maximum turning

angle for straight-lane driving. This limitation is also similar

to human behavior; we achieve it by defining the output

variable membership function as a singleton, confining this

turning to 2.5 percent of the total. This makes the driving

system less reactive when tracking a straight trajectory and

assures that they’ll adapt to the route smoothly. We can also

represent the output using a singleton without turning

limitations. We fine-tuned the membership functions

experimentally, comparing their behavior with human

operations and correcting it accordingly until the system

performed acceptably. So, the driving system selects a fuzzy

membership function set depending on the situation, which

leads to different reactions for each route segment.

Speed Control:-

To control speed, we use two fuzzy input variables:

Speed_Error and Acceleration. To control the accelerator and

the brake, we use two fuzzy output variables: Throttle and

Brake. The Speed_Error crisp value is the difference

between the vehicle’s real speed and the user-defined

Figure 3. The membership function definition for fuzzy

variables: (a) Lateral_Error straight, (b) Angular_Error

straight, (c) Lateral_Error curves, (d) Angular_Error curves,

(e) Speed_Error throttle, (f) Acceleration throttle, (g)

Speed_Error brake, and (h) Acceleration brake.

target speed, and the Acceleration crisp value is the speed’s

variation during a time interval. The throttle pressure range is

2-4 volts, and the brake pedal range is 0-240 degrees of the

actuation motor.

The fuzzy rules containing procedural knowledge for throttle

control are:-

 IF Speed_Error MORE THAN null THEN Throttle

up

 IF Speed_Error LESS THAN null THEN Throttle

down

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2235

 IF Acceleration MORE THAN null THEN Throttle

up

 IF Acceleration LESS THAN null THEN Throttle

down

The rules for brake control are:-

IF Speed_Error MORE THAN nullf THEN Brake down

IF Speed_Error LESS THAN nullf THEN Brake up

IF Acceleration LESS THAN nullf THEN Brake up

Where brake/throttle down means depress the brake and

throttle, and brake/throttle up means release the brake and

throttle. The associated membership functions of the fuzzy

linguistic labels null and nullf define the degree of nearness

to 0 of Acceleration and Speed_Error, repectively.

Figures 3e through 3h show the membership functions of

null(for the throttle controller) and nullf (for the brake

controller) for Speed_Error and Acceleration, repectively. An

asymmetry exists in the two variable definitions for two

reasons:

 To account for the difference in how accelerating

and braking vehicles behave, and

 To coordinate both pedals’ actuation to emulate

human driving.

Throttle and brake controllers are independent, but they must

work cooperatively. Activating the two pedals produces

similar outcomes and can

 Increase the target speed (stepping on the throttle or

stepping off the brake on down-hill roads),

 Maintain speed (stepping on or off either pedal

when necessary), and

 Reduce the vehicle’s speed (downshifting the

throttle or stepping on the brake).

ACC+Stop&Go

With ACC, the system can change the vehicle’s speed to

keep a safe distance from the lead vehicle. As an extreme

example, the lead vehicle might come to a complete stop

owing to a traffic jam. In this case, the ACC must stop the

vehicle using a stop- and-go maneuver; when the road is

clear, the ACC reaccelerates the vehicle until it reaches the

target speed. Combining ACC with stop-and-go maneuvers

increases driving comfort, regulates traffic speed, and breaks

up bottlenecks more quickly. Many rear-end collisions

happen in stop-and-go situations because of driver

distractions.

ACC systems have been on the market since 1995, when

Mitsubishi offered the Preview Distance Control system in its

Diamante model. Several sensors can provide the vehicle

with ACC capability; radar, laser vision, or a combination

thereof. Almost all car manufacturers now offer ACC

systems for their vehicles, but they all have two clear

drawbacks. First, the ACC systems don’t work at speeds

lower than 40kmh, so they can’t offer stop-and-go

maneuvers. Second, the systems manage only the throttle

automatically; consequently, the speed adaptation range is

limited.

Figure 4. The ACC+Stop&Go controller’s performance in an

automated vehicle. Keeping a safe distance (a) at 30 kmh, (b)

during speed reduction, and (c) in stop-and-go situations.

Our system overcomes these limitations by automating the

throttle and brake, which lets the system act across the

vehicle’s entire speed range. In our case, we selected GPS as

the safety-distance sensor. We installed GPS in both the

vehicles, and they communicate their position to one another

via WLAN.

Keeping a user-defined safety distance from the next vehicle

is a speed-dependent function: the higher the speed, the

larger the required intervehicle gap. This is the time-

headway concept- a time-dependent safety distance

maintained between two vehicles. If we set a safety time gap

of two seconds, for example, the space gap is 22.2 meters for

a vehicle moving at 40 kmh but approximately 55.5 meters

for 100 kmh. The time gap setting depends on the vehicle’s

braking power, the weather, the maximum speed, and so on.

Figure 4 shows our ACC+Stop&Go controller’s

performance in one of our automated vehicles. At the

experiment’s beginning, the trailing vehicle starts moving,

speeds up, and eventually stops because the lead vehicle is

blocking the way. The lead vehicle then starts moving, gains

speed, and brakes again, emulating a congested traffic

situation. A few seconds later, the trailing vehicle starts up

again, eventually stopping behind the lead vehicle.

Overtaking:-

The system can also manage obstacles or other vehicles in

the vehicle’s path by calculating when the vehicle should

change lanes to overtake the obstacles. First,

 The vehicle must be in the straight-lane driving

mode,

 The left lane must be free, and

 There must be room for the overtaking.

Given this, overtaking occurs as follows:-

 Initially, the vehicle is in straight-lane mode.

 The driving mode changes to lane-change mode,

and the vehicle moves into the left lane.

 The driving mode changes to straight-lane mode

until the vehicle has passed the obstacle or vehicle.

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2236

Figure 5. A flow chart of the overtaking algorithm.

The driving mode again changes to lane-change mode, and

the vehicle returns to the right lane.

Figure 6. The overtaking maneuver (a) starts with a change

from the right to the left lane and (b) ends with a change

from the left to the right lane. A is the distance at which the

vehicle changes lanes, and l is the vehicle’s length.

When the vehicle is centered in the lane, the driving mode

changes back to straight-lane mode, and driving continue as

usual.

Figure 5 shows a detailed flowchart of this algorithm. We

calculate the time for starting the transition from the first to

the second step as a function of the vehicles’ relative speed

and the overtaking vehicles’ length. Figure 6 illustrates the

overtaking maneuver.the overtaking vehicle must change

lanes at point A+l, where A is the distance at which the

vehicle changes lanes and l is the vehicle’s length. The dot

on the back of each vehicle represents a GPS antenna,

located over the rear axle. Vehicles use the GPS receptor and

the WLAN link to continuously track their own position and

that of other vehicles. The lane change proceeds only if the

front of the overtaking vehicle is completely in the left lane

upon reaching the rear of the overtaken vehicle in the right

lane. A is speed dependent- A=F(v), where v is the relative

speed between the overtaking and overtaken vehicles

because the higher the velocity, the larger the lane- change

distance. A is a function of the relative speed between both

vehicles because overtaking depends on the two mobile

objects’ speed. In this case, l is 4meters, a Citreon Berlingo’s

length. The system transitions from step 2 to step 3 when the

overtaking vehicle’s angular and lateral errors are both low.

Specifically, Angular_Error must be less than 2 degrees and

Lateral_Error less than 0.8 meter. The system transitions to

step 4 when the overtaking vehicle’s rear end passes the

overtaken vehicle’s front end and the separation is l. Finally,

the transition to step 5 is the same as from step 2 to 3.

Vision-based vehicle detection

To achieve reliable navigation, all autonomous vehicles must

master the basic skill of obstacle detection. This vision-based

task is complex. Consider, for example, common situations

in urban environments, such as missing lane markers,

vehicles parked on both sides of the street, or crosswalks. All

such situations make it difficult for a system to reliably

detect other vehicles, creating hazards for the host vehicle.

To address this, we use a monocular color-vision system to

give our GPS-based navigator visual reactive capacity.

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2237

Search and vehicle detection

 We sharply reduce execution time by limiting obstacle

detection to a predefined area in which obstacles are more

likely to appear. This rectangular area-or region of

interest(ROI)-covers the image’s central section.

To robustly detect and track vehicles along the road, we need

two consecutive processing stages. First, the system locates

vehicles on the basis of their color and shape properties,

using vertical edge and color symmetry characteristics. It

combines this analysis with temporal constraints for

consistency, assuming that vehicles generally have artificial

rectangular and symmetrical shapes that make their vertical

edges easily distinguishable. Second, the system tracks the

detected vehicle using a real-time estimator.

Vertical-edge and symmetry discriminating analysis

After identifying candidate edges representing the target

vehicle’s limits, the system computes a symmetry map of the

ROI to enhance the objects with strong color symmetry

characteristics. It computes these characteristics using pixel

intensity to measure the match between two halves of an

image region around vertical axis. It then considers the

vertical edges of paired ROIs with high symmetry

measures(rejecting uniform areas). It does this only for pairs

representing possible vehicle contours, disregarding any

combinations that lead to unrealistic vehicle shapes.

Temporal consistency

In the real world, using only spatial features to detect

obstacles leads to sporadic, incorrect detection due to noise.

We therefore use a temporal validation filter to remove

inconsistent objects from the scene. That is, the system must

detect any spatially interesting object in several consecutive

image iterations to consider that object a real vehicle; it

discards all other objects.

We use the value t=0.5s to ensure that a vehicle appears in a

consistent time sequence. A major challenge of temporal-

spatial validation is for the system to identify the same

vehicle’s appearance in two consecutive frames. To this end,

our system uses the object’s(x,y) position in correlative

frames. That is, it can use the position differences to describe

the vehicle’s evolution in the image plane. At time instant t0,

the system annotates each target object’s (x,y) position in a

dynamic list, and starts a time count to track all candidate

vehicles’ temporal consistency. At time t0+1, it repeats the

process using the same spatial-validation criterion. We

increase the time count only for those objects whose distance

from some previous candidate vehicle is less than dv.

Otherwise, we reset the time count. A candidate object is

validated as a real vehicle when its time count reaches t=0.5s.

Given that the vision algorithm’s complete execution time is

100 ms, an empirical value dv=1m has proven successful in

effectively detecting real vehicles in the scene. Figure 7

shows examples of the original and filtered images along

with the ROI symmetry map and the detected vehicle’s final

position.

Vehicle tracking

We track the detected vehicle’s position using position

measurement and estimation. We use the detected vehicle’s

ROI image as a template to detect position updates in the

next image using a best-fit correlation. We then use the

vehicle’s (x,y) location in data association for position

validation. Basically, we want to determine whether any

object in the current frame matches the vehicle being

tracked. To do this, we specify a limited search area around

the vehicle position, leading to fast, efficient detection. We

also establish a minimum correlation value and template size

to end the tracking process if the system obtains poor

correlations or if the vehicle moves too far away or leaves

the scene.

Next, we filter the vehicle position measurements using a

recursive least-squares estimator with exponential decay. To

avoid partial conclusions, the system keeps the previously

estimated vehicle position for five consecutive iterations—

without calculating any validated position—before

considering the vehicle track as lost. Given a loss, the system

stops vehicle tracking and restarts the vehicle detection

stage. Figure 8 illustrates our algorithm, showing how the

system tracked the lead vehicle in real traffic situations.

Adaptive Navigation

After detecting the lead vehicle’s position, we must ensure

safe navigation in ACC mode if the lead vehicle suddenly

brakes within the safety gap limits. This event could easily

lead to a crash unless the host vehicle rapidly detects the

braking situation and brakes hard. To ensure this, the system

must detect the lead vehicle’s brake light activation, which

clearly indicates braking.

A vehicle’s brake light position varies depending on its

model and manufacturer. So, the system must carry out a

detailed search to accurately locate these lights inside the

vehicle’s ROI. We do have some priori information to ease

the search: brake indicators are typically two red lights

symmetrically located near the vehicle’s rear left and right

sides. Once the system locates these lights, it must detect

sudden brake light activation; it does this by continuously

monitoring the lights’ luminance. In case of sudden

activation, the system raises an alarm to the vehicle navigator

to provoke emergency braking.

Figure 9 shows an example of sudden braking decision.

Brake lights are a redundant safety feature: if they’re

activated, a braking procedure has already started.

Fortunately, our system continuously computes the distance

to the lead vehicle. If this distance is too short, it

automatically stops the vehicle.

III. CONCLUSION

We carried out all our experiments within a private circuit

and the results shows that the fuzzy controllers perfectly

mimic human driving behavior in driving and route tracking,

as well as in more complex, multiple-vehicle maneuvers,

such as ACC or overtaking. In the near future, we’re

planning to run new experiments involving three automatic

driving cars in more complex situations such as intersections

or roundabouts. Fuzzy control’s flexibility let us integrate a

host of sensorial information to achieve our results. Also,

using vision for vehicle and obstacle detection lets the host

vehicle react to real traffic conditions, and has proven a

crucial complement to the GPS-based navigation system. To

International Journal For Technological Research In Engineering

Volume 4, Issue 10, June-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2238

improve and further this work, we’re collaborating with other

European institutions specializing in autonomous vehicle

development under the UE Contract Cyber-Cars-2. Through

this collaboration, we plan to perform a cooperative driving

involving more than six vehicles, adding new sensors for

pedestrian detection, traffic-sign detection, and infrastructure

monitoring. We’ll also integrate new wireless communication

systems that include vehicle-to-vehicle, vehicle-to-

infrastructure, and in-vehicle information transmission.

Finally, we’re planning to use Galileo , next-generation GPS

systems that address some existing GPS positioning problems

and improve location accuracy.

REFERENCES

[1] M.A. Sotelo et al., ―Vehicle Fuzzy Driving Based

on DGPS and Vision,‖ Proc. 9th Int’l Fuzzy

Systems Assoc., Springer, 2001, pp.1472-1477.

[2] R. Garcia et al., ―Frontal and Lateral Control for

Unmanned Vehicles in Urban Tracks,‖ IEEE

Intelligent Vehicle Symp. (IV2002), vol.2, IEEE

Press, 2002, pp. 583–588.

[3] A. Broggi et al., ―The Argo Autonomous Vehicle’s

Vision and Control Systems,‖ Int’l J. Intelligent

Control and Systems, vol. 3, no.4, 2000, pp. 409–

441.

[4] M.A. Sotelo, Global Navigation System Applied to

the Guidance of an Terrestrial Autonomous Vehicle

in Partially Known Outdoor

