
International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2529

REVIEW OF LITERATURE FOR MODEL BASED TESTING

Arpita Mathur
1
, Ajay Mathur

2

1
Department of Computer Science, Lachoo Memorial College of Sc. & Tech., A-Sector, Shastri Nagar,

Jodhpur (India)
2
Department of Computer Science, Govt. Polytechnic College, Jodhpur (India)

Abstract: Due to the huge complexity of modern software

systems, it is required to specify precisely what a software

component should do and how it should behave. If the final

implementation deviates from the expected behavior, then

the use of the developed component may fail. This also

applies for the development of communicating protocols as

they are merely implemented in the software. A protocol

definition defines the syntax, semantics, and

synchronization of communication.

I. INTRODUCTION

A literature survey was done on how model based testing can

be used to test the protocols that shows sequential (time

based) temporal relationship between entities. Unified

Modeling Language (UML) sequence diagram was also

studied for its use as a base for designing the dynamic model

for protocol to shows how the entities interact/communicate.

The protocol specification mechanism may be developed for

the temporal protocols using UML.

II. LITERATURE SURVEY

Glenford J. Myers has given definition of testing as “Testing

is the process of executing a program with the intent of

finding errors” in his book titled “The Art of Software

Testing”. According to him understanding the true definition

of software testing can make a profound difference in the

success of your efforts. If our goal is to demonstrate that a

program has no errors, then we tend to select test data that

have a low probability of causing the program to fail. On the

other hand, if our goal is to demonstrate that a program has

errors; our test data will have a higher probability of finding

errors. The latter approach will add more value to the

program than the former.

Antonia Bertolino and Eda Marchetti provide a

comprehensive overview of software testing, from its

definition to its organization, from test levels to test

techniques, from test execution to the analysis of test cases

effectiveness in their paper titled “A Brief Essay on Software

Testing”. According to them testing is an important and

critical part of the software development process, on which

the quality and reliability of the delivered product strictly

depend.

As explained in “Testing and Quality Assurance for

Component-Based Software” random testing is a strategy that

requires the “random” selection of test cases from the entire

input domain. The authors Jerry Zeyu Gao, H. S. Jacob Tsao

and Ye Wu the advantage of random testing is its efficiency.

Test cases can be generated automatically and require no

further efforts such as sub domain classification in partition

testing.

According to paper titled “Model-based Software Testing”

by Ibrahim K. El-Far and James A. Whittaker software

testing requires the use of a model to guide such efforts as

test selection and test verification. When the mental models

are written down, they become sharable, reusable testing

artifacts. In this case, testers are performing what has

become to be known as model-based testing.” This paper

introduces model-based testing and discusses its tasks in

general terms with finite state models as examples.

In the paper titled “Model-Based Testing” author Mark

Utting explains that model-based testing is a break-through

innovation in software testing because it completely

automates the validation testing process. Model-based testing

tools automatically generate test cases from a model of the

software product. The generated tests are executable and

include an oracle component which assigns a pass/fail

verdict to each test. The paper gives an overview of the

variety of methods and practices of model based testing, and

then speculate on how model-based testing might promote or

complement the program verifier grand challenge.

The author Bernhard Rumpe suggests that an approach using

models as central development artifact needs to be added to

the portfolio of software engineering techniques, to further

increase efficiency and flexibility of the development as well

as quality and reusability of results in his paper “Model-

based Testing of Object-Oriented Systems”. A number of

test patterns are proposed that have proven helpful to the

design of testable object-oriented systems. In contrast to

other approaches, this approach uses explicit models for test

cases instead of trying to derive (many) test cases from a

single model.

In the paper titled “ UML Profiles for Modeling Real-Time

Communication Protocols” the authors Barath Kumar and

Juergen Jasperneite explains that validation of non-functional

and functional properties of the protocols during the early

stages of design and development is important to reduce cost

resulting from protocol anomalies, design errors like

deadlock or livelock situations and/or violations of time

constraints. In this paper they review the most important

real-time UML profiles which can be used for designing

time-critical Industrial Communication Protocols (ICPs). In

the paper “The Use of UML Sequence Diagram for System-

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2530

on-Chip System Level Transaction-based Functional

Verification” the authors Yu JinShan, Li Tun, Tan QingPing

propose a method to support transaction level verification of

system-on-chip based on UML sequence diagram. They

use UML sequence diagram to capture the communication

and collaboration behavior among IP cores in system-on-chip

and build high level specification for transaction level

verification. Then these sequence diagrams were used to

guide the generation of transaction test sequence. They

verified a typical SoC design. UML sequence diagram can

capture the complex communication behavior among IP

cores in SoC design and it efficiently supports SoC system

level functional verification was shown by an experiment.

In the paper titled “An Evaluation of Random Testing”

authors Duran, W. Joe, Ntafos, C. Simeon presents

simulation results which suggest that random testing may

often be more cost effective than partition testing schemes.

Results of actual random testing experiments are also

presented which confirm the viability of random testing as a

useful validation tool.

The authors I. Ciupa, Pretschner, A. Leitner, M. Oriol, B.

Meyer, of the paper titled “On the Predictability of Random

Tests for Object-Oriented Software” have evaluated the

variance of the number of faults detected

by random testing over time through an experiment to show

the predictability of random testing on object-oriented

programs. Their study provides evidence that the relative

number of faults detected by random testing over time is

predictable but that different runs of the random test case

generator detect different faults. The study also shows

that random testing finds faults quickly.

Dick Hamlet explains in his paper titled “When only random

testing will do” that in some circumstances, random testing

methods are more practical than any alternative, because

information is lacking to make reasonable systematic test-

point choices. In this work he examined some situations in

which random testing is indicated. He discusses issues and

difficulties with conducting the random tests.

The paper “Weak Mutation Testing and Completeness of

Test Sets” by author William E. Howden describes an error-

based method called weak mutation testing. In this method,

tests are constructed which are guaranteed to force program

statements which contain certain classes of errors to act

incorrectly during the execution of the program over those

tests. Weak mutation testing requires the identification of

classes of elementary program components and of simple

errors that can occur in the components.

M. R. Woodward gives a brief review of the

program testing technique known as mutation testing, an

error-based testing technique in his paper titled “Mutation

testing-an evolving technique”. In this technique a large

number of simple changes (mutations) are made to program

one at a time. Test data then has to be found which

distinguishes the mutated versions from the original version.

Mutation testing as originally developed was considered

costly. The author discusses strong and weak mutation

testing and considers its use in testing algebraic

specifications.

The paper “A practical system for mutation testing: help for

the common programmer” outlines a design for a system that

will approximate mutation, but in a way that will be

accessible to everyday programmers. The author A. J. Offutt

visualizes a system to which a programmer can submit a

program unit, and get back a set of input/output pairs that are

guaranteed to form an effective test of the unit by being close

to mutation adequate.

III. CONCLUSION

An overview of the literary survey is done on software

testing, model based testing, random testing, mutation testing

and Unified Modeling language. Some of the popular testing

techniques were also reviewed. Study shows the need of

modeling software and that the process of model based

testing of dynamic model and temporal relationship may be

validated through model based testing. After validation this

dynamic model may become the oracle for validating the

proposed protocol. An experiment may be conducted on this

by giving random inputs to the temporal relationship and

dynamic model.

REFERENCES

[1] Glenford J. Myers, The Art of Software Testing,

second edition, John Wiley & Sons, Inc., 2004,

ISBN 0-471-46912-2.

[2] Practical Software Testing, A Process-Oriented

Approach, Ilene Burnstein, Springer-Verlag New

York, Inc.,2003, ISBN 0-387-95131-8.

[3] Software Testing and Continuous Quality

Improvement, Second Edition, William E. Lewis,

Auerbach publications, ISBN 0-8493-2524-2.

[4] IEEE Standard Glossary of Software Engineering

Terminology (Std610.12-1990), Copyright 1990 by

IEEE.

[5] UML based Test Specification for Communication

Systems, A Methodology for the use of MSC and

IDL in Testing, Dissertation, 2004

[6] H. Balzert, Software Management, volume 2, first

edition, 1998, ISBN 3827400651.

[7] Kaner, C., J. Falk, & H. Nguyen, 1999, Testing

Computer Software, Wiley Computer Publishing,

second edition, ISBN 0471358460.

[8] E.J. Weyuker, “On Testing Non-testable Programs”,

The Computer Journal, vol. 25, no.4, pp. 465—470,

1982.

[9] Antonia Bertolino, Eda Marchetti, ”A Brief Essay

on Software Testing”

[10] Ibrahim K. El-Far and James A. Whittaker, “Model-

Based Software Testing”, Florida Institute of

Technology.

[11] J.J. Marciniak , “Encyclopedia on Software

Engineering”, Wiley, 2001

[12] Harry Robinson, “Intelligent Test Automation “,

2000

International Journal For Technological Research In Engineering

Volume 4, Issue 12, August-2017 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2017.All rights reserved. 2531

[13] Dehla Sokenou, “Generating Test Sequences from

UML Sequence Diagrams and State Diagrams”,

GEBIT Solutions.

[14] „Unified Modeling Language Specification”,

Version 2.0, OMG, 2004.

[15] Lu Luo, “A UML Documentation for an Elevator

System Distributed Embedded Systems”, PhD

Project Report, December 2000.

