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Abstract:   this research paper to qualitatively compare four 

popular classical methods of multi-objective optimization in 

terms of various performances matrices that represents 

solution quality and numerical efficiency. Two test 

problems were selected that cover a wide range of 

optimization problem types constrained vs. unconstrained, 

equality vs. inequality constraints and bounded vs. 

unbounded. One mathematical problem and one practical 

problem were chosen. Performance matrices chosen were 

the total number of function evaluations and variance in 

results. This work was motivated by the lack of clear 

comparison between the algorithms. As it will be shown, 

some methods are useful only if some conditions are met. 

For example, the weighted sum method is one of the most 

used methods. It fundamentally cannot represent non-

convex regions, and has been found to be unable to 

represent well distributed solutions. ε-constraint method 

overcomes weaknesses of this method. For all algorithms, a 

built in MATLAB subroutine is used, and this made the 

computational implementation simpler 

Keywords: MATLAB, MOOP, SQP 

 
I.    INTRODUCTION 

Optimization is the task of finding one or more solutions 

which correspond to minimizing (or maximizing) one or 

more specified objectives and which satisfy all constraints (if 

any) and design variables. Design variables are variables that 

a designer or engineer can freely choose, for example the 

thickness, material, width and the length of a part. The 

resulting stress, volume, natural frequency, free height and 

other performance measures are often considered either as 

objective functions or constraints. Objective functions are the 

system response that we wish to minimize, while constraints 
are limits that we impose on the system.A single-objective 

optimization problem involves a single objective function 

and usually results in a single solution, called an optimal 

solution. On the other hand, a multi-objective optimization 

task considers several conflicting objectives simultaneously. 

Global business environment challenges companies to deliver 

high quality products at low costs under shorter development 

lead- times. The challenge to produce the desired product 

first time and every time undeniably underlines the 

importance of product design and development function. 

Many in industrial sector accept the notion that more than 

70% of the final product quality and cost are determined at 
the early design stage of a product development process. 

Moreover, this stage provides a great leverage to engineers to 

decide about product quality, reliability, cost, and other 

customer requirements in an environment composed of  

 

limited resources, divergent interests and annoying priorities. 

These multiple criteria need to be optimized for better trade-

off at initial stage and following to which helps to make a 

successful product. Failing to address the multi-criteria 

issues often leads to wrong design, which in turn results in 

poor performance, premature failure, high cost, and customer 

dissatisfaction 

This research focused on area of multi-objective 

optimization that was found to be lacking in literature. No 

clear comparison of classical methods of multi-objective 
optimization has been done looking at different types of 

algorithms, using quantitative performance measures. New 

designers wishing to use multi-objective optimization 

techniques are flooded with available solving methods, each 

clamming to be the superior algorithms. 

There are lots of multi-objective optimization algorithms 

available in literature. Many methods produce a set of pareto 

solutions that demonstrate the trade-off between the 

objective functions. Other methods produce a single pareto 

solution, where the user’s preferences are considered 

beforehand. A primary goal of multi-objective optimization 

is to model a decision maker’s preferences (ordering or 
relative importance of objectives and goals), methods are 

categorized depending on how the decision maker articulates 

these preferences, (i) methods that involve a priori 

articulation of preferences, which implies that the user 

indicates the relative importance of the objective functions or 

desired goal before running the optimization algorithms, (ii) 

methods with a posteriori articulation of preferences, which 

entail selecting a single solution from a set of equivalent 

solutions [12]. Advantages and disadvantages of different 

methods are discussed throughout the paper. The methods 

compared all have their known strength and drawbacks. 
This work was motivated by the lack of clear comparison 

between the algorithms. As it will be shown, some methods 

are useful only if some conditions are met. For example, the 

weighted sum method is one of the most used methods. It 

fundamentally cannot represent non-convex regions, and has 

been found to be unable to represent well distributed 

solutions. ε-constraint method overcomes weaknesses of this 

method. 

For all algorithms, a built in MATLAB subroutine is used, 

and this made the computational implementation simpler. 

the multi objective optimization algorithms that were 

compared. Five algorithms are presented: general multi-
objective optimization method, the weighted sum method, 

the є-constraints method, the goal programming method, and 

sequential quadratic programming. 
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For the four deterministic methods, the anchor points were 

automatically calculated before the multi-objective 

optimization portion of the algorithms was run. This 

eliminated the need to define the normalizing factors. 
 

II.   WEIGHTED SUM METHOD 

The weighted sum method, as the name suggests, scalarizes a 

set of objective into a single objective by pre-multiplying 

each objective with a user supplied weight. This method is 

the simplest approach and is probably the most widely used 

classical approach. Faced with multiple objectives, this 

method is the most convenient one that comes in mind. For 

example, if we are faced with the two objectives of 

minimizing the cost of a product and minimizing the amount 

of wasted material in the process of fabricating the product, 

one naturally thinks of minimizing a weighted sum of these 
two objectives [18]. 

The weight of an objective is usually chosen in proportion to 

the objective’s relative importance in the problem. For 

example, in the above mentioned two objective minimization 

problems, the cost of the product may be more important than 

the amount of wasted material. Thus, the user can set a higher 

weight for the material cost than for the amount of wasted 

material. However, setting up an appropriate weight vector 

also depends on the scaling of each objective function. We 

suppose that the weighting coefficients wm are real numbers 

such that wm ≥ 0 for all m = 1, 2. . . M. it is also supposed that 

the weights are normalized, that is, 
1

1
M

mm
w


 . 

 

After the objectives are normalized, a composite objective 

function F(x) can be formed by summing the weighted 

normalized objectives and the multi-objective optimization 

problem is then converted to a single objective optimization 

problem as follows: 

Minimize      
1
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Where fm(x) is the normalized value of the mth objective 

function, and M is the number of objective functions. The 

sub-problem is repeated for a number of different weights, 

and only one solution is obtained for each weight wm. Of all 

multi-objective optimization methods, the weighted sum 

method is often the least computationally expensive. 

However, equally spaced weights do not guarantee equally 

spaced solutions in the objective space and the method can 

only represent well defined convex regions of a Pareto front. 

However, there are a number of difficulties with this 

approach. In handling mixed optimization problems, such as 
those with some objectives of the maximization type and 

some of the minimization type, all objective have to be 

converted into one type. Although different conversion 

procedures can be adopted, the duality principle is 

convenient and does not introduce any additional 

complexity. In most nonlinear multi-objective optimization 

problems, a uniformly distributed set of weight vectors need 

not find a uniformly distributed set of pareto-optimal 

solutions. Since this mapping is not usually known, it 

becomes difficult to set the weight vectors to obtain a pareto-

optimal solution in a desired region in the objective space.  

 
Despite the many methods for determining weights, a 

satisfactory, a priori selection of weights do not necessarily 

guarantee that the final solution will be acceptable; one may 

have to resolve the problem with new weights. In fact, 

weights must be functions of the original objectives, not 

constants, in order for a weighted sum to mimic a preference 

function accurately. 

  

III.   CONSTRAINT METHOD 

In order to overcome the difficulties faced by the weighted 

sum approach in solving problems having non-convex 
objective spaces, the ε-constraint method is used. Haimeset 

al. (1971) suggested reformulating the multi-objective 

optimization problem by just keeping one of the objectives 

and restricting the rest of the objectives within user-specified 

values. The modified problem is as follows: 

 Minimize          fµ (x),   

Subject to        
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                    ;m   

In the above formulation, the parameter εm represents an 

upper bound of the value of fm and need not necessarily mean 
a small value close to zero. Different pareto-optimal 

solutions can be found by using different εm values. The same 

method can also be used for problems having convex or non-

convex objective spaces alike. In terms of the information 

needed from the user, this algorithm is similar to the 

weighted sum approach. In the latter approach, a weight 
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vector representing the relative importance of each objective 

is needed. In this approach, a vector of ε values representing, 

in some sense, the location of the pareto-optimal solution is 

needed. However, the advantage of this method is that it can 
be used for any arbitrary problem with either convex or non-

convex objective space. 

The solution to the problem stated largely depends on the 

chosen ε vector. It must be chosen so that it lies within the 

minimum or maximum values of the individual objective 

function. Moreover, as the number of objectives increases, 

there exist more elements in the ε vector, thereby requiring 

more information from the user. 

 

Goal Programming: 

The ideas of goal programming were originally introduced in 

charnes etal. (1955), but the term goal programming was 
fixed in charnes and cooper (1961). It is one of the first 

methods expressly created for multi-objective optimization. 

The basic idea in goal programming is that the decision 

maker specifies (optimistic) aspiration levels for the objective 

functions and any deviations from these aspiration levels are 

minimized. An objective function jointly with an aspiration 

level forms a goal. We can say that , for example, minimizing 

the price of a product is an objective function, but if we want 

the price to be less than 500 dollars, it is a goal (and if the 

price must be less than 500 dollars, it is a constraint). The 

aspiration levels are assumed to be selected so that they are 
not achievable simultaneously. 

It is worth noticing that the goals are of the same form as the 

constraints of the problem. This is why the constraints may 

be regarded as a subset of the goals. This way of formulating 

the problem is called generalized goal programming. After 

the aspiration levels have been specified, the following task 

is to minimize the under and overachievements of the 

objective function values with respect to the aspiration levels. 

We now have the multi-objective optimization problem in a 

form where we can minimize the deviational variables. 

There are two methods for solving goal program: The 
weights method forms a single objective function consisting 

of the weighted sum of the goals and the preemptive methods 

optimizes the goals one at a time starting with the highest-

priority goal and terminating with the lowest, never 

degrading the quality of a higher priority goal. Here we 

consider only weights method.  

Goal programming problem is as follows: 

Suppose that the goal programming model has n goals and 

that the ith goal is given as 

Minimize Z = Gi,           i = 1, 2, …, n. 

The combined objective function used in the weights method 

is then defined as: 
Minimize Z = w1G1 + w2G2 + ……. +wnGn 

Subject to  

                  fi(xi) –di
+ + di

- = 0. 

Where   di
- = negative deviation from ith goal 

(underachievement), and 

             di
+ = positive deviation from ith goal 

(overachievement), 

            Gi = (di
- + di

+). 

Goal programming is considered as powerful technique for 

solving multi-objective optimization and its application has 

been greatly enhanced in recent years. It is being applied in 

various functional areas, including academic planning, 

financial planning, hospital administration, media solution, 
aggregate production planning, manpower planning, etc. 

many researchers who solves design problems with 

conflicting objective have found applying goal 

programming. All goal programming formulations are 

minimization models. The distinguishing feature of goal 

programming is its capability of handling a number of goals 

with different priorities simultaneously in the objective 

function. The goals are satisfied in an ordinal sequence. 

Despite its popularity and wide range of applications, there is 

no guarantee that it provides a Pareto optimal solution. In 

addition, goal programming has additional variables and 

nonlinear equality constraints, both of which can be 
troublesome with larger problems. A weighted goal 

programming constitutes a subclass of goal programming, in 

which weights are assigned to the deviation of each objective 

from its perspective goal. The preemptive goal programming 

approach is similar to the lexicographic method in that the 

deviations |dj | = d+
j +d−

j for the objectives are ordered in 

terms of priority and minimized lexicographically. Weighted 

goal programming and preemptive goal programming 

provide Pareto optimal solutions if the goals form a Pareto 

optimal point or if all deviation variables, d+
j for functions 

being increased and d−
j for functions being reduced, have 

positive values at the optimum [15]. The latter condition 

suggests that all of the goals must be unattainable. Generally, 

however, Weighted and preemptive goal programming can 

result in non-Pareto optimal solutions. 

 

Sequential Quadratic Programming (SQP): 

This is the most widely used algorithm for non-linearly 

constrained optimisation. The Karush-Kuhn-Tucker 

conditions are en-forced in an iterative manner. An 

approximate Quadratic Programming sub-problem is solved 

at major iteration. The solution to the QP problem gives a 
search direction. Using the search direction a line search is 

carried out. At major iteration an approximation of the 

Hessian is updated using the BFGS method. The Quadratic 

Programming problem solved at iteration of SQP is an 

approximation of the original problem with linear constraints 

and quadratic objective: 

 

21
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Where the Lagrangian function L is defined as: 
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Where λ is a vector of approximate Lagrange multipliers and 

μ is a vector of approximate KKT multipliers. 

 

Instead of using the true Hessian of the Lagrangian,
2 ( )L x  

is replaced by Hk, which is the BFGS approximation of the 
Hessian: 

                                            

1
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The solution to the QP sub-problem produces a search 

direction vector dk, which is used to form a new iterate xk+1. 

                                                    1k k kx x d    

A line search is carried out to choose α such that the 

following penalty function (also called merit function) is 

minimised: 

                                

 
1 1
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 
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where ρ is a penalty factor. This line search sub-problem 

helps to improve the convergence of the algorithms and it 

balances the sometimes conflicting objectives of reducing the 

objective function and of satisfying the constraints. 

 

SQP Algorithm: 
Step.1. Given the current iterate xk, and a current approximate 

Hessian Hk, solve the QP sub problem to obtain the search 

direction dk. Notice that the solution of the QP sub problem 

provides estimates of the multipliers λ and µ. 

Step.2. Given dk, solve the line search problem to minimise 

the merit function ψ(x) and then find the next iterate xk+1. 

Step.3. Update the Hessian approximation Hk+1 using the 

BFGS formula. 

Step.4. Check if the convergence criterions satisfied, if not 

set k = k+1 and go back to Step 1. 

Sequential quadratic programming (SQP) methods tried to 
solve a nonlinear program directly instead of converting it to 

a sequence of unconstrained problems. The basic approach is 

same to Newton’s method for unconstrained minimization: A 

local model of the optimization problem is constructed and 

solved at each step, approaching a step towards the solution 

of the original problem. In unconstrained minimization, the 

local model is quadratic and the objective function must be 

approximated. A quadratic model for the objective function 

and a linear model of the constraint are used in an SQP. A 

nonlinear programming in which the objective function is 

quadratic and the constraints are linear is called a quadratic 

programming (QP). An QP is solved at every iteration by an 

SQP method.  
 

IV.  RESULTS AND COMPARISON 

The objective of this research was to perform a 

comprehensive comparison between multi-objective 

optimization methods on both mathematical and practical 

problems, determine the efficiency of each method and to 

determine which method is appropriate for which type of 

problem. In order to assess the efficiency and effectiveness 

of each method, two problems were chosen from the 

literature. The test problem set represents various types of 

optimization (equality and inequality constraints, bounded 

and unbounded) [11]. 
 

4.1 Test Problem 1 

The first problem was proposed by [11]. The problem 

contains two equality constraints with five unbounded design 

variables, as follows: 

 

Minimize 
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      i = 

1, 2, …., 5. 

 

4.2 Test Problem 2 

To demonstrate the proposed approach, the study considers 

leaf spring design. In order to have a better understanding a 

brief description suspension is discussed first. The leaf 
spring suspension is a popular choice for the rear of the 

trucks and some utility vehicles. It has been used for some 

heavy duty trucks front suspensions and the rear of the 

passenger cars. It is made from the layers of the spring steel 

bolted together through the centre of the leaves. It has 

several leaves – simply adding leaves increases the load 

carrying capacity of the suspension.  

The top leaf typically is the longest leaf and each end of the 

leaf formed into an eye, into which rubber bushing is 

installed. The spring eyes are bolted to the chassis in front 

and attached at the rear through a hinge joint called a 
shackle. 

 The shackle permits the spring to effectively change its 

length as it flexes to absorb the impacts. The leaf spring also 

attaches through U-bolts to the solid rear axle. So it locates 

the axle housing in both lateral and fore-aft position, no 
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additional linkage is necessary, an important function. This 

permits a simple suspension design with obvious packaging 

benefits. 

 
Fig.4.1. Leaf Spring 

Leaf spring is a flexible element suspension system, which is 

able to store the energy applied to it in the forms of loads and 

displacements. It is designated to absorb bumps and 

irregularities of road surface, which are transmitted from 

wheels, tires and axles. Further, the spring allows the 
suspension arms, links and axles to travel in vertical plane, a 

function called wheel travel. The movement leaf spring is 

termed as oscillation and the stiffness of the spring is called 

spring rate. Basically, higher the spring rate, the stiffer a 

vehicle will ride. Softer spring rate and longer wheel travel 

leads to a smooth ride. The length, width, thickness of the 

leaves and severity of arch are all physical factors, which 

affect the spring rate and in turn the spring performance. 

4.2.1 Design for Leaf Spring: 

There are different types of leaf springs as: elliptic, semi-

elliptic, flat cantilever etc. The semi-elliptical springs are the 

most common variety. It can be considered as to cantilevers. 
Leaf springs are initially curved and straighten under load. 

Such an arrangement decreases the stresses as an assembled 

leaf spring is subjected to preliminary deformation opposite 

to that caused by the forces acting upon it during operation in 

a machine. The free end of the spring is modified for the 

attachment of the load. The practical design of the leaf spring 

is based on the assumption of a beam of uniform strength. 

The design expressions for semi-elliptic type of leaf spring 

are as given below: 

1. Stress: The springs are small elastic beam assemblies 

loaded under bending stresses. The expression for stress is 
given as: 

                                
2

3

2

P l
Stress

n b t

 


           (MPa) 

 
During the cycle of absorbing and storing energy the stress in 

the spring must not exceed a certain maximum value in order 

to avoid settling or premature failure. 

 

2. Spring Rate: In design of leaf spring, the spring rate plays 

an important role. Spring rate in simplest sense is defined as 

the measurement of the load required to compress the spring 

at a given distance. The expression for spring rate is given 

as: 

                             Spring Rate 
3

2

8 .

3

E n b t stiff factor

l

    


          (Nm)  
 

It is a gauge of spring strength and flexibility “X” amount of 

rate is required to    support “X” amount of weight. For 

example, if it takes 100 pounds to compress a spring one 

inch, it would take to 200 pounds to compress the spring two 

inches. Basically, higher the spring rate, the stiffer the 

vehicle will ride and lower the spring rate, the softer will be 
the vehicle ride. The spring rate is influenced by several 

factors including material grades, leaf thickness, leaf lengths, 

leaf end configuration, shackle angle, number of leaves and 

internal friction. 

3. Free Height: The free height dictates the arch of the leaf 

spring, which creates added strength and recoil action. The 

expression for free height is given as: 

                                 Free Height 

2

08

l

R



          (m) 

 

4. Weight: Leaf spring contributes about 10 – 20% of the un-

sprung weight (the weight, which is not supported by the 

suspension system). Hence even a small reduction in the 

weight of the leaf spring will lead to improvements in the 
passenger comfort, vehicle cost and increased fuel 

efficiency. The expression for weight is given as: 

 

                               
Weight n l b t    

        (N) 

 

Where n is number of leaves, l denotes length, b represents 

breadth, t denotes thickness of each leaf, and R0 is radius of 

curvature of leaf spring. Other nomenclatures include δ as 
material density = 78*103 N/m3, P is load on spring = 4500 

N, E as elastic modulus = 2.10*103 MPa. The Stiffness factor 

value is assumed to be equal to 1. The above design 

equations clearly indicate that they are mainly influenced by 

the control parameters such as length, breadth, thickness, 

number of leaves and radius of curvature.  

 

For a specific automotive vehicle, the range of these control 

parameters is selected from the manufacturer’s catalogue and 

is presented in table: 

Table.4.1. Range of Design Variables 

 S.N Control Parameters Range  

   1. Number of Leaves 
(n) 

         6 

   2.  Length (l) 700 ≤ l ≤ 

3000 mm 

   3. Breadth (b) 40 ≤ b ≤ 120 

mm 

   4. Thickness (t) 6 ≤ t ≤ 25 

mm 

   5. Radius of 

Curvature (R0) 

      350 mm 
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Less stress and softer spring rate is preferred for smooth ride 

and longer spring life. From the design expressions for stress 

and spring rate it is observed that for minimizing stress the 

values for number of leaves n, breadth b and thickness t must 
be as large as possible and value of length l must be as small 

as possible. However, for softer spring rate value of length l 

should be as large as possible and values of number of leaves 

n, breadth b and thickness t should be as small as possible. 

Therefore, these decision variables have opposite effect on 

stress spring rate. Hence it is clear that the requirements of 

stress and spring rate are not commensurate and are therefore 

conflicting. There are tradeoffs in the sense that sacrificing 

requirement of one goal will tend to produce greater return 

on others. In this situation where all the performance 

characteristics are to be improved simultaneously the 

problem has to be formulated as multi-objective optimization 
problem [13].  

 

4.2.3 Multi-Objective Optimization Model: 

Multi-objective optimization model is formulated to obtained 

optimal values of the control parameters. The four quality 

characteristics are considered as objective functions and as 

constraints with target values of each. 
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Each quality characteristics is assigned a target value. The 

target value for each quality characteristic is obtained by 

solving them individually as a single objective optimization 

model [13].  

 

Numerical Result: 
The objective of this research was to perform a 

comprehensive comparison between multi-objective methods 

on both mathematical and practical problems, to determine 

the efficiency of each method and to determine which 

method is appropriate for which type of problem. In order to 

assess the efficiency and effectiveness of each method, two 

problems were chosen from the literature. The test problem 

set represents various types of optimization (equality and 

inequality constraints, bounded and unbounded). 

Four numerical performance metrics and one visual criterion 

were chosen for quantitative and qualitative comparisons: (1) 
function count, (2) current step, (3) current point, (4) 

function value, (5) graphical representation of results. 

For consistency, the same parameter values of the MATLAB 

optimization function “fminimax” were used in all 

optimization algorithms and the default values were used for 

all optimization parameters. This section shows the 

numerical results by all algorithms for all test problems. 

 

V.   CONCLUSION 

This paper As has been stressed many times thus far, a large 

variety of methods exists for multi-objective optimization 
problems and none of them can be claimed to be superior to 

the others in every aspect. Selecting a multi objective method 

is a problem with multi objective itself. Thus some matters 

of comparison and selection between the methods are worth 

considering. The theoretical properties of the methods can 

rather easily be compared. However, in addition to 

theoretical properties, practical applicability is hard to 

determine without experience and experimentation. 

More fruitful information relating to the question of method 

selection would likely emerge if computational applications 

were more extensively reported. Unfortunately not too many 

actual computational applications of multi-objective 
optimization techniques have been published. Instead, 

methods have mainly been presented without computational 

experiences or with simple academic test problems. Most of 

the applications presented are merely proposals for 

applications or they deal with highly idealized problems for 

most multi-objective optimization methods a natural reason 

is the difficulty in finding with real decision makers. A 

complicating fact is also the enormous diversity of decision 

makers. 

One more thing to keep in mind is that for the most part only 

successful applications are published. This means that a 
complete picture of the applicability of methods cannot be 

drawn, on the basis of the experiences reported. The evident 

lack of benchmarking type test problems for non linear 

multi-objective optimization complicates the comparison of 

different methods. Naturally, some methods are useful for 

some problems and other methods for other types of 

problems. However, bench mark problems could be used to 

point out such behavior. 

Each of four methods showed their own strength and 
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weakness. For a convex pareto front, the weighted sum 

method gave an idea of the pareto front with minimal 

computational burden; however, it could not find any 

solutions on non-convex resigns. The weighted sum 
algorithm was the simplest one of the primary reasons for its 

frequent use in the various fields of multi-objective 

optimization. 

Different pareto optimal solutions can be found by using 

different ε values. The same methods can also be used for 

problem having convex or non-convex objective space alike. 

In terms of the information needed from the user, this 

algorithm is similar to the weighted sum approach. In the 

latter approach, a weight vector representing the relative 

importance of each objective is needed. In this approach, a 

vector of ε values representing the sense, the location of the 

pareto-optimal solution is needed. However, the advantage of 
this method is that it can be used for any arbitrary problem 

with either convex or non-convex objective space. 

Goal programming yields only an efficient, rather than 

optimum solution to the problem. In essence, what goal 

programming does is to find a solution that simply satisfies 

the goals of the model with no regard to optimization. Such 

“deficiency” in finding an optimum solution may raises 

doubts about the viability of goal programming as an 

optimizing technique. Sequential quadratic programming 

(SQP) methods attempt to solve a nonlinear program directly 

rather than convert it to a sequence of unconstrained 
minimization problems. 

This research quantitatively and qualitatively compared the 

performance of the four widely used multi-objective 

optimization methods using two test problems. The results 

indicated that there is no single algorithm that outperforms all 

others in all performance metrics. Indeed there is a “trade-

off” in various performance metrics among the tested multi-

objective optimization methods, and the choice of the proper 

algorithm should be made considering the type and 

complexity of the problem at hand, computing resource, and 

the user’s proficiency in programming. 
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