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Abstract: Today’s automotive industry is undergoing 

significant changes in technology thanks to economic, 

political and environmental pressures. The shift from 

conventional internal combustion vehicles to electric 

vehicles brings with it a new host of technical challenges. 

The most prominent challenge in electric vehicles is 

modelling and predicting the states of the Lithium Ion 

batteries that power them. There is a constant risk of 

batteries having an early End of Life and hence turning 

into scrap. Therefore, to prevent the same, two major 

parameters are identified which can be assessed in order to 

prevent the early degradation of batteries. The parameters 

are State of Charge (SOC) and State of Health (SOH). The 

existing methods in order to predict the above two 

parameters include the Coulomb Counting Method (CCM), 

OCV (Open Circuit Voltage Method) and Fuzzy Logic 

Method. These methods show promise for small and 

predictable datasets but when the data becomes non-linear 

and the variability of the current and voltage parameters 

increase, these methods do not provide satisfactory results. 

Therefore, this paper proposes a State of Charge and State 

of Health estimation method based on Kalman Filter. 

Employing a Kalman Filter for the state estimation of the 

battery pack not only allows for enhanced accuracy of the 

estimation but allows the battery modelling engineers to 

develop a lithium ion battery that would last longer. 

Keywords:State of Charge (SOC), State of Health (SOH), 

Coulomb Counting Method (CCM), Open Circuit Voltage 

(OCV) & Fuzzy Logic Method, Kalman Filter 

 

I.   INTRODUCTION 

A battery management system is the key component which 

assures the smooth functioning of battery packs.One of the 
key functions of the battery management system is to protect 

the battery from damage due to external factors.A battery 

management system (BMS) protects the overall system and 

provides optimal performance management of energy 

storage. In addition to on-line monitoring of the terminal 

voltage of every single cell, a BMS is required to predict and 

provide each cell’s State of Charge (SOC) and state of health 

(SOH), which are the most important indicators for adapting 

each cell’s optimized loading timely for extending the whole 

pack life.  

 

In simple terms, the battery SOC can be employed in a 
figurative sense as a replacement for the fuel gauge used in 

conventional vehicles. Similarly, the SOH can be likened to 

the odometer.[1] Overcharging and over-discharging are two 

of the major problems that are faced by battery packs and  

 

aBMSwhich is successfully able to predict these critical 

parameters will eventually ensure the longevity of the same.  

For proper functioning Electric vehicles, there needs to be a 

robust online estimation of SOC and SOH parameters. 

Unfortunately, as there is a fuel indicator for fuel vehicles, 

there is no concrete technique for direct measurement of the 

states. Instead, it is estimated by the measured theoretical 

battery variables, such as the time-varying voltage and the 

charging/discharging current. Data-driven methods can be 

divided into direct measurement and model-based methods. 
Direct measurement methods include the Coulomb counting 

method (CCM), Open Circuit Voltage (OCV) method, and 

the impedance method[3]. 

 

The CCM is performed through measuring the discharging 

current over time and then making a Current-Time (I-t) 

integration to obtain an estimated SOC value.[4] The 

disadvantages of CCM are that it relies on the accuracy of 

the current sensor and it can accumulate errors due to its 

open-loop nature. The OCV method is relatively accurate but 

needs a sufficient rest time. The accuracy reduces in case of 

a flat OCV-SOC curve. [7,8] In the model-based approach, 
one measures the battery’s online data and applies these 

signals as model inputs to calculate the SOC (output).  

 

Electrical and electrochemical models are the widely used 

battery models. All the parameters work well on fresh cells 

but give erroneous results on aged cells. Therefore, all 

battery researchers are delving into Adaptive methods for 

prediction. Therefore, by dynamically combining two crucial 

parameters, that are, Open circuit voltage (OCV) & Coulomb 

Counting Method (CCM), a significantly more accurate 

estimation can be achieved. In order to achieve this, a 
Kalman filter is employed. 

 

II.   METHODOLOGY 

In order to determine the state of charge (SOC), it is to be 

linked with two major parameters, namely, Open circuit 

voltage (OCV) & Current.  

 

For relating both the parameters, the process flow is as 

follows.  
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Fig 1. Process flow 

As observed in the process flow, there will be two separate 

branches of measurement, namely, SOC as a function of 
OCV & SOC as a function of time & current. Both process 

flows follow the common data processing techniques, that is, 

Data collection, analysis and Output. 

 

SOC as a function of OCV: The process explanation is as 

follows: 

 

1)Data Collection: The data is collected on the cell’s open 

circuit voltage as it goes from hundred percent to zero 

percent. A quasi-discharge technique is employed to speed up 

the process. In this technique, the battery is drained at C/20 
where C is the cell capacity. Based on the Ohm’s law 

calculations, the circuit schematic to achieve data collection. 

 
Fig 2. OCV measurement circuit schematic 

The OCV measurement values are collected from the Serial 

monitor and python is used to convert the data points into 

.csv file.  

 

2)Data analysis: The obtained data points are normalized 

from 0 to 100 percent scale and from those data points, a 

polynomial function is fit to get the state of charge as a 

function of open circuit voltage. The polynomial fit is 

determined by performing a chi square analysis using a 

python script. 

 
SoC (OCV) =  

268.4970355259198 * OCV^8 + -6879.270367122276 * 

OCV^7 + 76716.49575172913 * OCV^6 -

486365.6733759814 * OCV^51917287.1707991716 * 

OCV^4 -4812471.06572991 * OCV^3 7511312.300797121 

* OCV^2 -6665390.783393391 * OCV 2574719.229612701 

 

SOC as a function of current and time:  

 

1)Data Collection: The Lithium ion cells are placed in series 

with 1-ohm resistor and a 60-ohm test load. The voltage drop 

is measured by the Arduino across the power resistor. Using 
ohm's law concept, the precise value of R is obtained. This 

value of R is sent to the Python via the serial monitor.  

 

 
Fig 3. Current measurement circuit schematic 

 

2)Data analysis: An 18650 cell is used rated 3Ah for which 
the total number coulombs are calculated.  The State of 

charge used is obtained by coulombs used over total 

coulombs. After adding and subtracting the state of charge 

used with the initial state of charge, we obtain the State of 

charge as a function of time and current. The total formulae 

obtained is as follows: 

 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠 = 3𝐴 ×
60𝑚𝑖𝑛

𝑟
×

60𝑠

𝑚𝑖𝑛
(1)

= 10,800 𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠 

 

𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠 𝑢𝑠𝑒𝑑 = 𝐼 × Δ𝑡 =
𝐶

𝑠
× 𝑆(2) 

𝑆𝑜𝐶 𝑢𝑠𝑒𝑑 % =
𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠 𝑢𝑠𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑙𝑜𝑚𝑏𝑠
× 100

=
𝐼 × Δ𝑡

10,800
× 100 (3) 

 

SoC 𝑡, 𝐼 = SoC0 − SoC 𝑈sed = SoC0 −
1 × Δ𝑡

10,800
× 100(4) 
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Based on the above steps, the system diagram for the Kalman 

filter is shown as follows. 

 
Fig 4. System diagram 

 
Kalman filter circuit: The Kalman filter circuit is designed to 

operate in two states, namely, Current measurement state and 

OCV measurement state. 

 

1)Current Measurement: In this condition, the relay is at off 

position. The battery which is connected to the load 

discharges through the 1-ohm power resistor. The voltage 

drop that occurs across R is measured by the Arduino Nano. 

The measured voltage drop is used to determine the current 

and this value of current is sent to Python. 

 
2)OCV Measurement: In this condition, the relay is at high. 

The battery in this case is disconnected from the load. Due to 

this, the OCV measurement is taken. The voltage drop across 

R1 is measured and this value is sent to python. 

 
Fig 6. Current and OCV measurement 

 

III.   CALCULATIONS 

Kalman filter Algorithm: 

The Kalman filter process includes four steps, namely, 

initialization, prediction, measurement, updation and 

repetition. The four processes and their respective equations 

are given as follows. 

 

Initialization: Thestate estimate and the estimate variance 
matrix are initialized by using measured OCV and current 

values. The Last estimate equation and estimate variance 

matrix equations are devised as follows. 

(5) 

(6) 
 

Prediction: The updationof the transformation matrix occurs 

in a time interval over which the current is measured. The 

prediction process occurs for each iteration. The 

transformation matrix is: 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥 ∶ 𝐹
                                                                      →

𝑡 = [
1 −

Δ𝑡

10,800
× 100

 0 1
](7) 

In order to obtain the new state estimate and variance, the 

last state is multiplied with the state transformation matrix. 

The new current measurement which is obtained from 

Arduino is utilized to update the second component of the 

state estimate matrix. The equations for new state estimates 

and new estimate variance are as follows. 

𝑁𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥
                                                         ^

𝑡|𝑡−1 = 𝐹
→

𝑡 [
(𝑆𝑜𝐶(%)))

(𝐼)
](8) 

𝑁𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝑃
                                                                   →

𝑡|𝑡−1 = 𝐹
→

𝑡  
𝜎estimate

2 0

0 𝜎estimate
2  𝐹𝑡

𝑇
→

(9) 

Measurement: For the observation matrix, the raw sensor 

data is used without any manipulation. The raw data can be 
represented in the form of an identity matrix in our case. 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑀𝑎𝑡𝑟𝑖𝑥: 𝐻
                                                          →

= [
1 0
0 1

](10) 

The state measurement is obtained by measuring the OCV. 

(11) 
The observation noise matrix is set lower than the estimation 

variance matrix. 

(12) 

 

Updation: The Kalman gain is calculated at first. For 

calculating the Kalman gain, the primary step is the 

calculation of the residual vector, that is, the difference 

between measured and estimated state). 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑆
                                                                            →

𝑡 = ⟨𝐻
→

|𝑃
→

𝑡|𝑡−1|𝐻
→

𝑇⟩ + 𝑅
→

(13) 

The Kalman gain calculated is as follows. 

𝐾𝑎𝑙𝑚𝑎𝑛 𝑔𝑎𝑖𝑛: 𝐾
→

𝑡 = 𝑃
→

𝑡|𝑡−1𝐻
→

𝑇𝑆
→

𝑡
−1--(14) 

To adjust the new best estimate, the residual vector is 

multiplied with the Kalman gain and added to the state 

estimate.  

𝑁𝑒𝑤 𝑏𝑒𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥
^

𝑡|𝑡 = 𝑥
^

𝑡|𝑡−1 + 𝐾
→

𝑡𝑧
^

𝑡--(15) 

The estimated variance matrix is updated using the Kalman 

gain. 

𝑁𝑒𝑤 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑃
                                                                                          →

𝑡|𝑡 = (‖
→

− 𝐾
→

𝑡)𝑃
→

𝑡|𝑡−1(16) 

 

Repetition: In this step, the new estimate is set as the last 

estimate and the new estimate variance matrix is set as the 

last estimate variance matrix. 

 Last state estimate: 𝑥
^

𝑡−1 = [
 (initial SoC (\%)) 
 (initial current I) 

] 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 ∶ 𝑃
                                                                            →

𝑡−1 = [
𝜎estimate

2 0

0 𝜎estimate
2 ] 

𝑆𝑡𝑎𝑡𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡:𝑦
                                                          ^

𝑡 = 𝐻
→

[
SoC(𝑂𝐶𝑉 reading )

𝐼
] 

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑁𝑜𝑖𝑠𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 ∶ 𝑅
                                                                                  →

= [
𝜎measurement

2 0

0 𝜎measurement
2 ] 
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𝐿𝑎𝑠𝑡 𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒: 𝑥
^

𝑡−1 =

𝑥
^

𝑡(17)𝐿𝑎𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑃
                                                                                         →

𝑡−1 = 𝑃
→

𝑡|𝑡 (18) 

 

IV.   RESULT AND DISCUSSION 

 
Figure 7: SOH comparison for various cycles 

 

As charge depends upon two parameters, namely, current and 
time, two conditions arise. These conditions depend upon the 

load of the battery. 

For constant load condition, the formula for charge is as 

follows. 

Qm= I*Δt   (19) 

Here, I is the current obtained 

Δt is the discharge time interval. 

As observed above, in constant load conditions, there is no 

change in current observed due to external factors.  

For variable load conditions, there arises a problem. Due to 

environment changes, the fluctuations in current is observed. 
To avoid this, an element of integration is introduced in the 

equation. 

Qm= ∫ I *δt    (20) 

Here, δ is the time interval. 

The formula for state of health is as follows: 

𝑆𝑂𝐻 = 𝑄𝑚(𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑦𝑐𝑙𝑒)/𝑄𝑚(𝑖𝑑𝑒𝑎𝑙) 

(21)  

 

Qm: The maximum charge of the battery in coulombs. 
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V.   CONCLUSION 

The State of Charge of the 18650-lithium ion battery is 

calculated using Open Circuit Voltage and Coulomb 

Counting Method. By using Kalman Filter both these values 

are converged to their actual values. The State of Health 

devised comes out to be the ratio of maximum capacity of nth 

cycle to the maximum capacity of ideal cycle. This model 

can be used to fine tune electric vehicles so that the batteries 
can be utilized to their full potential. 
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