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Abstract  

In this paper we discuss Some solutions of difference Equations and Difference inequalities in 

fixed point theory 

 

INTRODUCTION. : 

 Difference Equation is a relation involving differences, It is also known as recurrence relation. 

Application of difference equation in many branches such as Social Science, Economics, Dairy science, 

Agriculture etc. 

SOME DEFINITIONS: 

a) Difference operator : 

 Let y(k), be a function real or complex variable k. Difference operator ∆ is defined as 

∆ y(k) = y(k+1) - y(k) 

e.g. let y(x) = x
2
 

 y(x+1) = (x+1)
2
 

∆y(x) =(x+1)
2 

- x
2 
= 2x+1 

Fixed Point:-  

Let X be any non-empty set. The function  

F: X → X is defined as f(x) = x,       

It is known as fixed point in x. 

Lipschitzian:- suppose (X, d) be any metric space. 

A function f :  X→ X is said to be lipschitzian if there exists a constant    ≥ 0 such that  

d (F(x), F(y)) ≤   d(x, y) . for all x, y   X                       …..(1) 

The smallest   for which (1) hold it is said to be lipschitzian constant for f. it is denoted by L. 

i) If L  1 then f is called contraction. 

ii) L = 1 then f is called non expansive. 

Theorem 1: let (X, d) be a compact metric space 

With F : X → X satisfying 
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d(F(x), F(y))   d(x, y),    for all x, y    and x   y 

then F has a fixed point in X. 

Proof:  let us suppose that x, y   . by definition of  

Fixed point                       

                                  

           

     

Now to prove existence of the               ) attains 

                                         

 ( (     )      )              

This is not done. Our supposition is wrong 

  F has a unique fixed point in X. 

Theorm2: 

 let C be a non empty, closed and bounded convex set in a (real) Hilbert space H. then 

each non expansive map        has at least one fixed point. 

Proof: - Suppose C is a non empty, closed, convex subset of a normed linear space E 

Let       for any        such that        

Assume that          For each n=2,3….. 

Now 

           (  
 

 
)         

Is contraction by theorem 1 then there exists a unique point        such that 

          (  
 

 
)       

i.e. ‖        ‖  
 

 
‖     ‖  

 

 
      

Where      is diameter of C. for             

   {       ‖      ‖  
 

 
    }  

 

   {       ‖      ‖  
 

 
    } 

   {       ‖      ‖  
 

 
    } 
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   {       ‖      ‖  
 

 
    } 

i.e.                 

is a decreasing sequence of a non empty closed set 

       ‖ ‖           and  

   is a decreasing then 

               with         

For each i    {2,3,…} 

Consequently      with        

Now                  
 

 
  

Where  B (    
 

 
)   {      ‖ ‖    

 

 
} 

An is decreasing sequence of closed non empty set  

Now we have to prove that               

Let          then by theorem 

‖   ‖    
 

 
       and       ‖   ‖    

 

 
   ……….(1)       but            then 

‖      ‖  
 

          and       ‖      ‖  
 

        

We knew the fact H is a Hilbert space and C    be a bounded and       a non expansive 

map. Suppose             there exist a point a such that   
   

 
     ‖      ‖   √ √      

 ‖
   

 
  (

   

 
)‖   √     √

 

   
     

 

 
     

  
   

 
     and ‖

   

 
  ‖              

We know the fact. “H is a Hilbert space with         and     be a constant with       it 

there exists            ‖   ‖    ; ‖   ‖    and  ‖
   

 
  ‖    

Then 

‖   ‖   √                                                 …………… (3) 

By (1),  (2),   (3)  we conclude that 

 

‖   ‖   √   
 

 
     

   √    
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       √
  

 
 

 

  
       

   

           Therefore,               

By contor’s theorem (Applied       
 ) 

Guarantees and existence of      ⋂   
 
    

     ⋂    

 

   

 

 ‖        ‖  
    

    ( for all n            

 ‖        ‖=0 

Hence the proof 

Example:- 

Let H be a bounded, closed, convex subset of uniformly convex Banach space X and 

       be a non expansive map with 

Inf  ‖      ‖          show that F has a fixed point in H. 

Solution:- 

Suppose        be a non expansive map then there exists           in H such that   

   
     

 
       ‖        ‖   √ √       

      ‖        ‖          and              ‖        ‖    

By theorem 

‖
   

 
  (

   

 
)‖=

 

 
     

        ‖      ‖         

Where    {      ‖      ‖   
 

 
    } 

‖
   

 
  ‖     

‖   ‖   √   
 

 
     

  

       √
  

 
 

 

  
       

   

 

                     (By contor’s theorem) 
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     ⋂   

 

   
 

 ‖      ‖          

  

        it is fixed point in H. 
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