ROLE OF SOME SOLUTIONS OF DIFFERENCE EQUATIONS AND DIFFERENCE INEQUALITIES

Dr. S.R. Gadhe
Assistant Professor
HOD, Department of Mathematics
NW College Ak. Balapur
Dist. Hingoli (M.S)

Abstract

In this paper we discuss Some solutions of difference Equations and Difference inequalities in fixed point theory

INTRODUCTION.:

Difference Equation is a relation involving differences, It is also known as recurrence relation. Application of difference equation in many branches such as Social Science, Economics, Dairy science, Agriculture etc.

SOME DEFINITIONS:

a) Difference operator :

Let y(k), be a function real or complex variable k. Difference operator Δ is defined as

$$\Delta y(k) = y(k+1) - y(k)$$

e.g. let $y(x) = x^2$
 $y(x+1) = (x+1)^2$
 $\Delta y(x) = (x+1)^2 - x^2 = 2x+1$

Fixed Point:-

Let X be any non-empty set. The function

F:
$$X \to X$$
 is defined as $f(x) = x$, $x \in X$

It is known as fixed point in x.

Lipschitzian:- suppose (X, d) be any metric space.

A function $f: X \rightarrow X$ is said to be lipschitzian if there exists a constant $\alpha \ge 0$ such that

$$d(F(x), F(y)) \le \propto d(x, y)$$
. for all $x, y \in X$ (1)

The smallest \propto for which (1) hold it is said to be lipschitzian constant for f. it is denoted by L.

- i) If L< 1 then f is called contraction.
- ii) L = 1 then f is called non expansive.

Theorem 1: let (X, d) be a compact metric space

With
$$F: X \rightarrow X$$
 satisfying

ISSN (Online): 2347 - 4718

 $d(F(x),\,F(y)) < d(x,\,y), \quad \text{for all } x,\,y \in X \text{ and } x \neq y$

then F has a fixed point in X.

Proof: let us suppose that $x, y \in X$. by definition of

$$x = y$$

Now to prove existence of the map $x \to (x, F(x))$ attains

its minimum say $x_0 \in X$. by $def^n F(x_0) = x_0$

$$d\left(F(F(x_0)),F(x_0)\right) < d(F(x_0),x_0)$$

This is not done. Our supposition is wrong

∴F has a unique fixed point in X.

Theorm2:

let C be a non empty, closed and bounded convex set in a (real) Hilbert space H. then each non expansive map $F: C \to C$ has at least one fixed point.

Proof: - Suppose C is a non empty, closed, convex subset of a normed linear space E

Let $0 \in C$ for any $x_0 \in C$ such that $x_0 = 0$

Assume that $F(0) \neq 0$. For each n=2,3...

Now

$$F_n = \left(1 - \frac{1}{n}\right), F : C \to C$$

Is contraction by theorem 1 then there exists a unique point $\boldsymbol{x}_n \in C$ such that

$$x_n = F_n(x_n) = \left(1 - \frac{1}{n}\right) F(x_n)$$

i.e.
$$\|\mathbf{x}_n - \mathbf{F}(\mathbf{x}_n)\| = \frac{1}{n} \|\mathbf{F}(\mathbf{x}_n)\| \le \frac{1}{n} \delta(c)$$
.

Where $\delta(c)$ is diameter of C. for $\eta \in \{2,3,...\}$

$$Q_n = \left\{ x \in C : \|x - F(x)\| \le \frac{1}{n} \delta(c) \right\}.$$

$$Q_2 = \left\{ x \in C : \|x - F(x)\| \le \frac{1}{2} \delta(c) \right\}$$

$$Q_3 = \left\{ x \in C : \|x - F(x)\| \le \frac{1}{3} \delta(c) \right\}$$

$$Q_4 = \left\{ x \in C : \|x - F(x)\| \le \frac{1}{4} \delta(c) \right\}$$

i.e.
$$Q_2 \supseteq Q_3 \supseteq Q_4 \dots \dots \supseteq Q_n \supseteq \dots$$

is a decreasing sequence of a non empty closed set

$$d_n = \inf\{\|x\| : x \in Q_n\}$$
 and

Q_n is a decreasing then

$$d_2 \le d \le d_4 \dots \dots \le d_n \le \dots$$
 with $d_i \le \delta(c)$

For each $i \in \{2,3,\ldots\}$

Consequently $d_n \to d$ with $d \le \delta(c)$

Now
$$A_n = Q8n^2 \cap B(\overline{0, d + \frac{1}{n}})$$

Where B
$$\left(0, d + \frac{1}{n}\right) = \left\{x \in H : ||x|| < d + \frac{1}{n}\right\}$$

A_n is decreasing sequence of closed non empty set

Now we have to prove that $\lim_{n\to\infty} \delta(A_n) = 0$

Let $u, v \in A_n$ then by theorem

We knew the fact H is a Hilbert space and $C \le H$ be a bounded and $F: C \to C$ a non expansive map. Suppose $x \in C$, $y \in C$ there exist a point a such that $a = \frac{x+y}{2} \in C \Rightarrow \|a - F(a)\| \le 2\sqrt{\epsilon}\sqrt{2\delta(c)}$

$$\ \, \dot{\cdot}\, \frac{u+v}{2} \varepsilon\, Q_n \ \, \text{and} \, \, \left\| \frac{u+v}{2} - 0 \right\| \geq d_n \ldots \ldots \ldots \ldots (2)$$

We know the fact. "H is a Hilbert space with $u, v \in H$ and r, R be a constant with $0 \le r \le R$ it there exists $x \in H$ with $\|u - x\| \le R$; $\|v - x\| \le R$ and $\left\|\frac{u + v}{2} - x\right\| \ge r$

Then

$$\|\mathbf{u} - \mathbf{v}\| \le 2\sqrt{R^2 - r^2}$$
(3)

By (1), (2), (3) we conclude that

$$||u - v|| \le 2\sqrt{(d + \frac{1}{n})^2 - d_n^2} = 2\sqrt{d^2 + d\frac{1}{n} + \frac{1}{n^2} - d_n^2}$$

$$\delta(A_n) \le 2\sqrt{\frac{2d}{n} + \frac{1}{n^2} + (d^2 - d_n^2)}$$

Therefore, $\lim_{n\to\infty} \delta(A_n) = 0$

By contor's theorem (Applied $\{A_n\}_{n=2}^{\infty}$)

Guarantees and existence of $x_0 \in \bigcap_{n=2}^{\infty} A_n$

$$x_0 \in \bigcap_{n=2}^{\infty} Q8n^2$$

$$\therefore \|\mathbf{x}_0 - \mathbf{F}(\mathbf{x}_0)\| \le \frac{\delta(c)}{8n^2} (\text{ for all } n \in \{2, 3, ...\})$$

$$||x_0 - F(x_0)|| = 0$$

Hence the proof

Example:-

Let H be a bounded, closed, convex subset of uniformly convex Banach space X and $F: H \to X$ be a non expansive map with

Inf $\{||x - F(x)|| : x \in H\} = 0$ show that F has a fixed point in H.

Solution:-

Suppose $F: H \to X$ be a non expansive map then there exists $\{u_n\}, \{v_n\}$ in H such that

$$x_n = \frac{u_n + v_n}{2} \epsilon \, H \, ; \qquad \|z_n - F(z_n)\| < 2 \sqrt{\epsilon} \sqrt{2 \delta(H)}$$

$$\lim_{n\to\infty} ||u_n - F(u_n)|| = 0$$
 and $\lim_{n\to\infty} ||v_n - F(v_n)|| = 0$

By theorem

$$\left\| \frac{\mathbf{u} + \mathbf{v}}{2} - \mathbf{F} \left(\frac{\mathbf{u} + \mathbf{v}}{2} \right) \right\| = \frac{1}{n} \delta(\mathbf{H})$$

$$d_n = \inf\{||x - F(x)|| : x \in Q_n\}$$

Where
$$Q_n = \left\{ x \in H : ||x - F(x)|| \le \frac{1}{n} \delta(H) \right\}$$

$$\left\|\frac{u+v}{2}-0\right\| \ge d_n$$

$$||u - v|| \le 2\sqrt{(d + \frac{1}{n})^2 - d_n^2}$$

$$\delta(A_n) \le 2\sqrt{\frac{2d}{n} + \frac{1}{n^2} - (d^2 - d_n^2)}$$

$$\lim_{n\to\infty} \delta(A_n) = 0$$

(By contor's theorem)

$$x_0 \in \bigcap_{n=2}^{\infty} A_n$$
$$\{\|x - F(x)\| : x \in H\} = 0$$

 \Rightarrow x = F(x) it is fixed point in H.

REFERENCE:

- 1. Ahmad, S, Rama Mohana Rao, M: Theory of Ordinary Differential Equations. With Applications in Biology and Engineering. Affiliated East-West Press Pvt. Ltd., New Delhi (1999)
- 2. Baxley, JV: Global existence and uniqueness for second-order ordinary differential equations. J. Differ. Equ. 23(3), 315-334 (1977); Stanford University Press, Stanford, Calif. (1963).
- 3. Burton, TA: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Corrected version of the 1985 original. Dover, Mineola (2005)
- 4. Constantin, A: Global existence of solutions for perturbed differential equations. Ann. Mat. Pura Appl. (4) 168, 237-299 (1995)
- 5. Driver, RD: Existence and stability of solutions of a delay-differential system. Arch. Ration. Mech. Anal. 10, 401-426 (1962)
- 6. Fujimoto, K, Yamaoka, N: Global existence and nonexistence of solutions for second-order nonlinear differential equations. J. Math. Anal. Appl. 411(2), 707-718 (2014)
- 7. Grace, SR, Lalli, BS: Asymptotic behavior of certain second order integro-differential equations. J. Math. Anal. Appl. 76(1), 84-90 (1980)
- 8. Graef, J, Tunç, C: Continuability and boundedness of multi-delay functional integro-differential equations of the second order. Rev. R. Acad. Cienc. Exactas Fís. Nat, Ser. A Mat. 109(1), 169-173 (2015)
- 9. Kalmanovskii, V, Myshkis, A: Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications, vol. 463. Kluwer Academic, Dordrecht (1999)
- 10. Krasovskii, NN: Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963)
- 11. Miller, RK: Asymptotic stability properties of linear Volterra integro-differential equations. I. Differ. Equ. 10, 485-506 (1971)
- 12. Difference equation by Kelley and peterson new academic press.