ROLE OF SOME SOLUTIONS OF DIFFERENCE EQUATIONS AND DIFFERENCE INEQUALITIES

Dr. S.R. Gadhe
Assistant Professor
HOD, Department of Mathematics
NW College Ak. Balapur
Dist. Hingoli (M.S)

Abstract

In this paper we discuss Some solutions of difference Equations and Difference inequalities in fixed point theory

INTRODUCTION.:

Difference Equation is a relation involving differences, It is also known as recurrence relation. Application of difference equation in many branches such as Social Science, Economics, Dairy science, Agriculture etc.

SOME DEFINITIONS:

a) Difference operator :

Let y(k), be a function real or complex variable k. Difference operator Δ is defined as

$\Delta y(k) = y(k+1) - y(k)$

e.g. let $y(x) = x^2$

$y(x+1) = (x+1)^2$

$\Delta y(x) = (x+1)^2 - x^2 = 2x+1$

Fixed Point:

Let X be any non-empty set. The function $F: X \rightarrow X$ is defined as $f(x) = x, \ x \in X$

It is known as fixed point in x.

Lipschitzian: - suppose (X, d) be any metric space.

A function $f: X \rightarrow X$ is said to be lipschitzian if there exists a constant $\alpha \geq 0$ such that

$d (F(x), F(y)) \leq \alpha d(x, y) \ for \ all \ x, y \in X \(1)$

The smallest α for which (1) hold it is said to be lipschitzian constant for f. it is denoted by L.

i) $L < 1$ then f is called contraction.

ii) $L = 1$ then f is called non expansive.

Theorem 1: let (X, d) be a compact metric space

With $F : X \rightarrow X$ satisfying
\[d(F(x), F(y)) < d(x, y), \quad \text{for all } x, y \in X \text{ and } x \neq y \]

then F has a fixed point in X.

Proof: let us suppose that x, y \in X. by definition of

Fixed point \(F(x) = x \) and \(F(y) = y \)

\[\therefore d(x, y) = d(F(x), F(y)) \leq L d(x, y) \]

\[\Rightarrow d(x, y) = 0 \]

\[\therefore x = y \]

Now to prove existence of the map \(x \to (x, F(x)) \) attains its minimum say \(x_0 \in X \) by def \(F(x_0) = x_0 \)

\[d\left(F(F(x_0)), F(x_0)\right) < d(F(x_0), x_0) \]

This is not done. Our supposition is wrong

\[\therefore F \text{ has a unique fixed point in } X. \]

Theorm 2:

let C be a non empty, closed and bounded convex set in a (real) Hilbert space H. then each non expansive map \(F: C \to C \) has at least one fixed point.

Proof: - Suppose C is a non empty, closed, convex subset of a normed linear space E

Let \(O \in C \) for any \(x_0 \in C \) such that \(x_0 = 0 \)

Assume that \(F(0) \neq 0 \). For each \(n=2,3, \ldots \)

Now

\[F_n = \left(1 - \frac{1}{n}\right), \quad F: C \to C \]

Is contraction by theorem 1 then there exists a unique point \(x_n \in C \) such that

\[x_n = F_n(x_n) = \left(1 - \frac{1}{n}\right) F(x_n) \]

i.e. \(\|x_n - F(x_n)\| = \frac{1}{n}\|F(x_n)\| \leq \frac{1}{n} \delta(c). \)

Where \(\delta(c) \) is diameter of C. for \(\eta \in \{2,3,\ldots\} \)

\[Q_n = \left\{ x \in C : \|x - F(x)\| \leq \frac{1}{n} \delta(c) \right\}. \]

\[Q_2 = \left\{ x \in C : \|x - F(x)\| \leq \frac{1}{2} \delta(c) \right\} \]

\[Q_3 = \left\{ x \in C : \|x - F(x)\| \leq \frac{1}{3} \delta(c) \right\} \]
\[Q_4 = \left\{ x \in C : \| x - F(x) \| \leq \frac{1}{4} \delta(c) \right\} \]

i.e. \(Q_2 \supseteq Q_3 \supseteq Q_4 \ldots \supseteq Q_n \supseteq \ldots \)

is a decreasing sequence of a non empty closed set

\[d_n = \inf \{ \| x \| : x \in Q_n \} \]

and \(Q_n \) is a decreasing then

\[d_2 \leq d \leq d_4 \ldots \leq d_n \leq \ldots \] with \(d_i \leq \delta(c) \)

For each \(i \in \{2,3,\ldots\} \)

Consequently \(d_n \to d \) with \(d \leq \delta(c) \)

Now \(A_n = Q8n^2 \cap B(0, d + \frac{1}{n}) \)

Where \(B \left(0, d + \frac{1}{n} \right) = \left\{ x \in H : \| x \| < d + \frac{1}{n} \right\} \)

\(A_n \) is decreasing sequence of closed non empty set

Now we have to prove that \(\lim_{n \to \infty} \delta(A_n) = 0 \)

Let \(u, v \in A_n \) then by theorem

\[\| u - 0 \| < d + \frac{1}{n} \quad \text{and} \quad \| v - 0 \| < d + \frac{1}{n} \] \[\quad \ldots \ldots \text{(1)} \] but \(u, v \in Q8n^2 \) then

\[\| u - F(u) \| \leq \frac{1}{8n^2} \delta(c) \quad \text{and} \quad \| v - F(v) \| \leq \frac{1}{8n^2} \delta(c) \]

We knew the fact \(H \) is a Hilbert space and \(C \leq H \) be a bounded and \(F : C \to C \) a non expansive map. Suppose \(x \in C, y \in C \) there exist a point \(a \) such that

\[a = \frac{x+y}{2} \in C \Rightarrow \| a - F(a) \| \leq 2\sqrt{\epsilon} \sqrt{2\delta(c)} \]

\[\therefore \frac{\| u + v \|}{2} - F \left(\frac{u + v}{2} \right) \leq 2\sqrt{2\delta(c)} \sqrt{\frac{1}{8n^2}} \delta(c) = \frac{1}{n} \delta(c) \]

\[\therefore \frac{u+v}{2} \in Q_n \quad \text{and} \quad \frac{\| u + v \|}{2} - 0 \geq d_n \quad \ldots \ldots \text{(2)} \]

We know the fact. “H is a Hilbert space with \(u, v \in H \) and \(r, R \) be a constant with \(0 \leq r \leq R \) it there exists \(x \in H \) with \(\| u - x \| \leq R \); \(\| v - x \| \leq R \) and \(\frac{\| u + v \|}{2} - x \geq r \)

Then

\[\| u - v \| \leq 2\sqrt{R^2 - r^2} \] \[\quad \ldots \ldots \text{(3)} \]

By (1), (2), (3) we conclude that

\[\| u - v \| \leq 2 \sqrt{\left(d + \frac{1}{n} \right)^2 - d_h^2} = 2 \sqrt{d^2 + d \frac{1}{n} + \frac{1}{n^2} - d_h^2} \]
\[\delta(A_n) \leq 2 \sqrt{\frac{2d}{n} + \frac{1}{n^2} + (d^2 - d_n^2)}\]

Therefore, \(\lim_{n \to \infty} \delta(A_n) = 0\)

By contor’s theorem (Applied\(\{A_n\}_{n=2}^\infty\))

Guarantees and existence of \(x_0 \in \bigcap_{n=2}^{\infty} A_n\)

\[x_0 \in \bigcap_{n=2}^{\infty} Q8n^2\]

\[\therefore \|x_0 - F(x_0)\| \leq \frac{\delta(c)}{8n^2} \quad (\text{for all } n \in \{2, 3, \ldots\})\]

\[\therefore \|x_0 - F(x_0)\| = 0\]

Hence the proof

Example:

Let \(H\) be a bounded, closed, convex subset of uniformly convex Banach space \(X\) and \(F : H \to X\) be a non expansive map with

\[\text{Inf} \{\|x - F(x)\| : x \in H\} = 0\]

show that \(F\) has a fixed point in \(H\).

Solution:

Suppose \(F : H \to X\) be a non expansive map then there exists \(\{u_n\}, \{v_n\}\) in \(H\) such that

\[x_n = \frac{u_n + v_n}{2} \in H; \quad \|z_n - F(z_n)\| < 2\sqrt{\varepsilon \sqrt{2\delta(H)}}\]

\[\lim_{n \to \infty} \|u_n - F(u_n)\| = 0 \quad \text{and} \quad \lim_{n \to \infty} \|v_n - F(v_n)\| = 0\]

By theorem

\[\left\|\frac{u + v}{2} - F\left(\frac{u + v}{2}\right)\right\| \leq \frac{1}{n} \delta(H)\]

\[d_n = \text{inf} \{\|x - F(x)\| : x \in Q_n\}\]

Where \(Q_n = \{x \in H : \|x - F(x)\| \leq \frac{1}{n} \delta(H)\}\)

\[\left\|\frac{u + v}{2} - 0\right\| \geq d_n\]

\[\|u - v\| \leq 2 \sqrt{(d + \frac{1}{n})^2 - d_n^2}\]

\[\delta(A_n) \leq 2 \sqrt{\frac{2d}{n} + \frac{1}{n^2} - (d^2 - d_n^2)}\]

\[\lim_{n \to \infty} \delta(A_n) = 0\] \hspace{1cm} (By contor’s theorem)
\[x_0 \in \bigcap_{n=2}^{\infty} A_n \]
\[\{ \| x - F(x) \| : x \in H \} = 0 \]

\[\Rightarrow x = F(x) \text{ it is fixed point in } H. \]

REFERENCE:

12. Difference equation by Kelley and peterson new academic press.