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Abstract: The choice for image descriptor in a visual 

navigation system is not straightforward. Descriptors must 

be distinctive enough to allow for correct localization while 

still offering low matching complexity and short descriptor 

size for real-time applications. MPEG Compact  Descriptor  

for  Visual  Search  is a low complexity image descriptor 

that offers several levels of compromises between descriptor 

distinctiveness and size. In this work we describe how these 

trade-offs can be used for efficient loop-detection in a 

typical indoor environment. 

 

I.   INTRODUCTION 

Robots that navigate through unknown environments, such as 

autonomous vacuum cleaners, all face a common           

challenge: to create a representation of their environment 

while simultaneously trying to locate themselves. This 

problem is known in literature as Simultaneous Localization 

and Mapping (SLAM) and its formulation has been 

thoroughly reviewed    in [1] and [2]. Approaches to SLAM 

usually involve two alternate phases. During Motion 
Prediction the robot uses internal parameters to estimate local 

displacements, while during Measurement Update the robot 

interacts with the environment to improve both its pose 

estimation as well as its estimate of its environments map. 

In visual-based SLAM, motion prediction can be obtained by 

extracting and matching visual features from a sequence of 

images in a process called feature-based visual odometry[3]. 

These same features can also be used as landmarks of for 

loop- detection during the measurement update phase in a 

complete Visual SLAM (VSLAM) system [4]. 

The purpose of Loop-detection is to identify landmarks on 
the map that have already been seen by the robot during early 

stages of navigation. During this process, if a particular land- 

mark is allegedly found in two different places it means that 

the estimated trajectory described by the robot has probably 

drifted at some point. The relative displacement between 

these two appearances can then be used by a global optimizer 

to improve estimations of both the landmarks’ positions as 

well as robot’s pose. 

Early approaches to loop-detection using visual features 

include the work in [5], where authors used the SIFT [6] for 

its distinctive power and thus capability of correctly find a 

loop. SIFT’s distinctiveness; however, comes at a high price  
in terms of compute complexity leading to substantial battery 

consumption. Moreover, the amount of SIFT features gener- 

ated by a single image also makes it prohibitively expensive 

in terms of bandwidth requirement where remote processing  

is  needed such as in collaborative mapping. In [7] authors 

have used an intermediate level of representation to speed-up 

loop detection known as bags of visual words [8]; a   

technique originally developed to compare similarity 

between documents and which is still considered the state of  

 

the art today. Finally as the robot navigates throughout its 

environment the number of observed landmarks increases and 

so does the number of descriptors it stores for loop-detection. 

This means that loop-detection algorithms are bound to 

become expensive in terms of both memory and 

computational complexity [2] as the map grows. This forces 

system designers to either choose less complex descriptors, 

risking wrong data association, or to overestimate memory 

demands during hardware design. The problem of finding a 
perfect balance between de- scriptor distinctiveness and 

descriptor  size  is  not  exclusive to the VSLAM domain. 

When dealing with large databases, Content-Based Image 

Retrieval (CBIR) systems face this very same issue. Very 

recently, the Moving Picture Experts Group (MPEG) has 

defined a new industry standard for CBIR known as Compact 

Descriptors for Visual Search (MPEG CDVS). The standard 

specifies various modes of compression that offer trade-offs 

between distinctiveness and size and also provides with 

suggested metrics for image comparison that quantify how 

similar two images are. In this work we claim that the 
characteristics that make MPEG CDVS a good descriptor for 

CBIR, also make it ideal for robotic navigation. More 

specifically, we state that MPEG CDVS can be used as a 

fast, reliable and storage-efficient loop detector in a typical 

indoor VSLAM application. Our first contribution comes in 

Section III where we de- scribe a probabilistic approach to 

loop detection using the standard’s suggested similarity 

metric. We then compare per- formance of CDVS 

compression modes in terms of matching speed, feature 

extraction and storage requirements with the well-known 

SIFT descriptor for five different types of indoor floors and 
show that CDVS has superior performance in all cases in 

Section IV. Finally, in Section V we apply our proposed 

method to a real robotic application and show that our 

VSLAM approach gives better results than state-of-the-art 

laser-based SLAM. 

 

II.   THE MPEG COMPACT DESCRIPTOR FOR 

VISUAL SEARCH 

The Compact Descriptor for Visual Search (CDVS) is the 

new standard for Content Based Image Retrieval developed 

by the Moving Picture Experts Group [10]. It defines an 

image description tool designed for efficient and 
interoperable visual search applications. 

 

A. Descriptor Generation 

A CDVS descriptor is made of two parts: one global 

descriptor associated to the entire image and a set of local  

descriptors associated to specific points in the image known  

as interest points. The entire descriptor extraction process 

can be summarized as follows: 

1) Interest Point Detection; 
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− 

0 if J < r 

2) Feature Selection and Descriptor Extraction; where 

based on the level of compression used only a 

limited number of interest points will account for 

the final descriptor. 
3) Local Descriptor Extraction; 

4) Local Descriptor Compression; 

5) Coordinate Coding; 

Global Descriptor Generation: It is an aggregation of lo- cal 

descriptors to generate a fixed, small size description of the 

entire image. The final result of CDVS extraction is a 

compressed file whose size is upper-bounded by 512B, 1kB, 

2kB, 4kB, 8kB, and 16kB associated to the extraction modes 

1 to 6 respec-  tively. 

 

B. Descriptor Matching and Score 

When comparing two images MPEG CDVS suggests the use 
of two different types of matching scores: global score  and a 

locals score. The global score is given as a weighted 

correlation between the two images global descriptors. The 

local score given between two images results from the sum of 

local scores of each descriptor in those images, i.e a one-to-

one comparison is made between local descriptors from the 

two images. Finally, the standard also suggest the use of    a 

geometric consistency analysis, known as Distrat [11], to 

eliminate false matches between descriptors based on their  

geometry disposition. In order to detect a loop as defined in 

III-A, we consider only those features that have passed also 
the geometric con- sistency test. Moreover we consider the 

values given by local score as our means to indirectly 

measure the probability of loop detection for it gives more 

reliable results.. 

 

II.   PROPOSED MOTION MODEL AND LOOP 

DETECTION 

A robot carrying a calibrated camera navigates through an 

indoor environment while taking a picture Ik of the floor 
below at each time step k. The robot’s starting position and 

heading define both origin and x-axis of a global coordinate 

frame. This coordinate system then becomes uniquely 

defined as we choose the z-axis to point upwards. 

We assume the environment’s floor to be a planar surface  so 

that, for each time step k > 0, the robot’s pose is given    by xk 
= [xk, yk, θk]

T
 , where xk and yk indicate the robot’s 

coordinates and θk is the robot’s heading. 
 

Final motion between time steps k 1 and k can be modeled as 

a rotation followed by translation, so that at t = k pose can be 
recursively obtained as 

 
where ∆θk−1,k is the rotation angle estimated between time 

steps  k − 1 and  k,  R(∆θk−1,k )  is  the  rotation  matrix  for  that 

same angle, and Tk−1,k is the translation vector. 
A. Loop Definition 

The use of a downward-facing camera allows for a natural 

definition of loop based on the intersection of imaged 

regions. For images Ia and Ib taken along the robot’s path, we 

define loop as a function of the overlap ratio between the 

floor area observed by these two images. So given the area of 

intersection area(Ia   Ib), and the respective area of union 

area(Ia    Ib),  a loop can be defined as 

 
where r is the threshold that defines the minimum overlap 

ratio for which two intersecting images can be considered a 

loop. In this work we set this threshold to r = 0.33, which 

roughly amounts for an area intersection of 50% when Ia and 

Ib have the same areas. 
 

B. Loop Probability 

Loop detection as defined in (4) requires the knowledge     of 

how much intersection there is between the two images.    In 

order to indirectly measure the probability of having a 

particular area ratio we use the local score given between 

two images so that 

 
The conditional probability in (5) can be experimentally 

estimated through (6) by combining the knowledge of the 

cam- era’s parameters with a source of relative motion 

estimation. This process will be described in depth during the 

next section. 
 

III.  TRAINING OF PROPOSED MODEL 

Besides being distinctive, a descriptor needs also to be 

economical in terms of storage and extraction and matching 

times in order for it to be considered as a feasible option for 

loop detection. 

In this section we analyze the distinctiveness of all CDVS’ 

compression modes for the five different types of floorings 

seen in figure 1. We also compare their memory and 

processing time requirements with a popular implementation 

of the SIFT descriptor found in [12]. 
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A. Distinctiveness of CDVS local score 

Our analysis starts by driving the robot forward for 10 meter 
using a PointGrey Grasshopper 3 camera rigidly mounted on  

a Turtlebot 2 in a setup defined in section III. 

For each floor type we extract CDVS descriptors the se- 

quence of images and match each image with all the previous 
ones using CDVS local score to measure similarity. We 

repeat this process for all modes of compression to evaluate 

its effect on feature distinctiveness. 

Distinctiveness in this context means to have high local score 

for images having overlapping regions and very low scores 

otherwise. Since images were taken in sequence during 

robotic motion, images that are close in the sequence are also 

spatially next to each other, and thus should have high local 

score. 

A visual representations of these matches using compression 

mode 6 is given in figure 2 where pixel intensities in position 

(i, j) represent the local score between current image i and     
a previously visited image j. Since we only match current 

images with previous ones, each matrix representing the 

matches is triangular. 

To allow for a fair visual comparison, the matrices values 

have been normalized. Yellow pixels mean high local score 

while dark blue pixels indicate a low score. The presence of 

small, bright triangles seen at the lower end of each matrix 

indicates when the robot stopped. 

 
Ideally, these matching matrices should display increasingly 

intensity of pixel values (yellow) in regions near each 

diagonal and very low values (dark blue) everywhere else. 

The natural randomness intrinsically associated to the 

production of most of the floor types enables them to have a 

relatively the thick principal diagonals and to display very 

low matching scores where no overlap occurs. 

The one noticeable exception occurs for the printed wood 
floor. This particular artificial type flooring is made of a 

printed repetitive patterns. The effect of such patterns appears 

as bright spots on its matching matrix and can be 

particularly harmful for loop-detection since it leads to 

erroneously detected loops. 

We can observe the evolution of these spots and the diagonal 

thickness in figure 3 as we vary the compression mode. 

 
It is clear that the diagonal thickness decreases as the 

compression level increases, i.e. for lower modes of 

compres- sion. This phenomenon happens to all flooring 

types and it     is due to the fact that CDVS will use fewer 

keypoints with shorter local descriptors to represent each 
image. This makes  it difficult to correctly match images that 

are even just slightly displaced with respect to one another. 

Therefore; as expected, lower modes of compression can be 

considered to offer less distinctive local descriptors. 

On the other hand and for the same reason, bright spots     on 

the wooden pattern become even more visible as the level of 

compression increases, which makes this particular kind of 

flooring the worst case scenario and also our study case to 

test CDVS for loop detection. 

 

B. Effects of Feature Selection 

Besides being able to correctly distinguish between different 
floor patches, CDVS must also be economical in terms of 

storage, extraction time and matching time if it is to be 

considered as an alternative to well-established descriptors 

such as SIFT [6]. Here we examine these characteristics by 

analyzing the same five types of flooring. 

As seen in figure 4, feature selection has the effect of 

reducing the number of local features generated for each 

image. Since the final binary size of a CDVS descriptor is 

limited by its compression mode, the maximum number of 

local descriptors produced by each mode is upper-bounded  

and does not significantly depend on the particular type of 
flooring. 

 
Fig. 4: Average number of extracted local descriptors per image 

for each type of flooring. 

 
In terms of memory efficiency, feature selection  has  a  clear 
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effect on reducing storage requirements. For example,  an 

image taken from a Mosaic floor would normally require 

over 300kB of memory if SIFT descriptor were to be used, 

considering implementations such as [12], while CDVS 
would require at most 16kB at its least compressed mode. 

Another positive effect of feature selection is the reduction 

of extraction time as reported in table I. Since feature 

selection is made based on keypoints’ characteristics, only 

features from selected keypoints will be processed. 

Moreover, having a limited number of descriptors per 

image will also limit the time spent for comparing two 

images as reported in table II. Finally we observe that both 

extraction and matching times are at least an order of 

magnitude lower than SIFT and that these values show 

little variation within a given compression mode. 

Having upper-bounded memory requirements and extraction 
and matching times that are relatively invariant to the 

different types of floorings are essential qualities  for  systems  

that  may work on different environments. For example, 

system requirements for automatic vacuum cleaner should not 

depend on consumer’s specific type of floor. 

 

 
 

C. Estimating Loop Probability 

A camera’s intrinsic and extrinsic parameters define the 

camera’s pose with respect to the world and also allow us to 

make real world measurements directly from images. These 
Relative motion during training was obtained using the 

robot’s odometry, and although odometry suffers from error 

accumulation after long trajectories, it does provide depend- 

able relative motion estimations over short range distances. 

Moreover, images that are relatively distant from each other, 

will have zero overlapping region an therefore error accumu- 

lation will constitute a problem. During training phase 

relative motion was obtained by using a Kalman filter that 

combined information from both wheel odometry and a 

robot’s internal gyroscope during the experiment described at 

the beginning  of this section. 

 
By combining these pieces of information with the local 

scores of each analyzed matching pair, we can generate for 

each compression mode a  loop  detection  probability  curve 

as defined in 6. The resulting curves as seen in 5 show the 

probability two images having more than 50% of intersection 

for each mode given a local score. 

 

Lower compression modes achieve certainty at lower values 

of local score. This is due to the fact that low compression 

modes also have fewer descriptors to be used during match. 

 
Fig. 5: Conditional loop probability for printed wood floor. 

 
From these curves we select the minimum values values    of 

local score s that guarantee loop detection for each com- 

pression mode. These hypothesis values are reported in table 

III and used to define the loops during the final experiments 

discussed in section V. 

 

D. Visual Odometry for Testing 

In order to demonstrate that our approach could be applied to 

a vision-only navigation system having no other sensors  
such as gyroscope or wheel encoder, we have decided to 

implement VSLAM also using visual odometry. Our robot 

setup follows the one in [9]. However,  although we do use     

a similar approach to obtain odometry, our main concern in 

this work is the correct detection of loops for VSLAM. 

Depending on system requirements, less complex feature 

descriptors such as [13] and [14] could be used to generate 

odometry, while CDVS would be used just for loop 

detection. However, since local features from each image 

will already be available, we choose to use CDVS local 

descriptor to generate visual odometry as well. 

For each pair of consecutive images Ik−1 and Ik we perform a 

feature extraction and match of MPEG CDVS descriptors, 

which results into two sets of N > 2 matching coordinate 

pairs. We combine these pixel coordinates with the camera’s 

calibration information and produce the sets Pk−1 and Pk each 

containing the 3D coordinates for the N matching pairs. By 

defining Pk−1 and Pk to be the centroids of Pk−1 and Pk 
respectively, we retrieve rotation and translation using 
Singular Vector Decomposition. 

A visual representation of this process is shown in figure 6. 

 
Although CDVS already performs geometric consistency 

validation, we make useof a few RANSAC [15] cycles to re- 

move possible possible remaining outliers and improve 
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results. 

 

VI.  EXPERIMENTAL RESULTS 

Partial results from Sec. IV have lead us to try our loop- 
detection technique on the most challenging flooring for 

loop- closure, i.e. the flooring most susceptible false-loop 

detection. In this experiment, the robot navigates through 

indoor office for about 110 meter while taking a total of 7154 

images of its printed wood floor and performing loops before 

finally going 

back to its original position. 

We first use the sequence of images to generate the path’s 

visual odometry as described in IV for all except the first 

compression mode, which was unable to generate enough 

matching points between consecutive images. For those 

modes capable of estimating translation and rotation from 
consecutive 

 
 

local score mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 
 

Hypothesis 10 14 15 18 23 25 

Experimental – 20 16 18 24 27 

TABLE III: Hypothesized and Experiemtal threshold values 

for local score loop detection. 
 

images, we report their respective paths in Fig. 7 where we 

use the room’s blueprint as reference map. 

 

 

Fig. 7: Path comparison using visual odometry. 

 

We then perform loop detection as described in Sec IV where 

for each image pair whose local score was above the 

hypothesized in table III a loop was declared. 

For each compression mode, we have represented data from 

visual odometry and loop constraints as a path graph so that 

the robot’s trajectory could be optimized using the LAGO 

graph optimization software [16], whose purpose is to find a 

coherent sequence of poses that better describe all loop and 
odomtery constraints, and thus perform VSLAM. 

During these experiments, we have observed that the pro- 

posed local scores thresholds loop-detection found earlier 

were slightly too permissive and still allowed for small 

amount of false-positive loops to be detected. This fact has 

led us to empirically increase these thresholds until 

reasonable results were obtained. We report these new values 

as the Experimental entries in III, which differ very little 

from the hypothesized ones and thus proving that the method 

is still valid. Th resulting trajectories for each compression 

mode using the experimental thresholds can be seen in Fig. 

8. 

 
Fig. 8: Paths optimized using LAGO. 

 

A visual inspection between the two figures reveals the 

improvements obtained for all compression modes when 
loops are correctly detected. Except for compression mode 2, 

all improved trajectories pass through the hallway, enter and 

exit 

 
the northwest room and respect the physical constraints 

present in the map. However, in order to have a more 

quantitative measure of such improvements we report in III 

the pose difference between starting and ending poses in the 

trajectory, which ideally should be none. 

To highlight the gains in terms of both storage savings and 

matching times with respect to SIFT, we have compared the 

amount of memory required to save descriptors for all 7154 

images using each compression mode and also report the 

time necessary to compare the last image in the sequence 
with all previous one. We report these values in V. 

Finally, in order to compare our proposed method with 

existing state of the art frameworks for indoor SLAM, we 

also report on both figures the path generated using a Hoyuko 

laser- scanner optimized with the widely used Gmapping 

algorithm [17]. 

 
Fig. 9: Map and path generated using a laser scanner with 

Gmapping algorithm. 
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At first sight, results from laser scanner can be considered 

incorrect and unreliable. This occurs because laser scanner 

was unable to create a precise map of environment and thus 

was unable to reproduce its path correctly on the real world 
map. This becomes evident in figure 9 where the path 

generated by the laser seems to be coherent to its self-

generated "bended" map. Our method clearly does not suffer 

from the same issue. 

 

V.  CONCLUSION 

In this work we have proposed the use of MPEG CDVS in  a 

SLAM framework for loop-detection in an indoor environ- 

ment. We have shown experimentally that CDVS’ feature 

selection serves not only to reduce the final descriptor size 

but also to significantly speed up feature extraction and 

matching. In our practical experiment CDVS’s least 
compressed mode was shown to be over 20 times faster than 

SIFT during matching time and to require 10 times less 

storage space and still able  to provide for correct loop-

detection. Finally, when we compared to a laser scanner, we 

have seen that our approach has generated far better results. 
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