

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 102

REAL-TIME COMMUNICATION AND MULTIPOINT VIDEO

CONFERENCE USING WEBRTC AND MEDIA SERVER
Boobalan M

Department of Computer Science and Engineering

Sri Ramanujar Engineering College, Chennai-600127, India.

Abstract— Real-time communication (RTC) on the web is a

new standard and industry-wide effort that enables users to

access information in areas like chatting apps, social-media

platforms, over-the-top media services, video conferencing apps

and data streaming services. There are many proprietary

protocols and codec(s) available that are not easily

interoperable and scalable to implement a multipoint real-time

video conference system. But with WebRTC (Web Real-Time

Communication), you can add real-time communication

capabilities to your application that works on top of an open

standard. It supports video, voice, and generic data to be sent

between peers, allowing developers to build powerful voice- and

video-communication solutions. The technologies behind

WebRTC (Web Real-Time Communication) are implemented

as an open web standard and available as regular JavaScript

APIs in all major browsers. This paper speaks about a

multipoint real-time videoconferencing platform using

WebRTC APIs. In this paper, I’ve proposed a web application

for real-time communication using modern browser’s WebRTC

(Web Real-Time Communication) APIs that allows users to

communicate with high speed data transmission over the

communication channel using existing web technologies like

HTML5, CSS3, JavaScript, WebRTC (Web Real-Time

Communication) APIs and Coturn TURN server, NodeJs

Signaling server and Kurento media server.

 The outcome of this experiment shows that WebRTC (Web

Real-Time Communication) is a capable solution for scalable

multipoint real-time video conferencing and screen sharing app

within a modern web browser.

Keywords— multipoint video conference, coturn, Kurento,

webRTC, real-time, signaling server.

1. INTRODUCTION

Imagine a world where your phone, TV, and computer could

communicate on a common platform. Imagine it was easy to

add video chat and peer-to-peer data sharing to your web

app. That's the vision of WebRTC. The WebRTC open

standard enables users of these systems to view video content

or record comments to stream it to achieve real-time

communication between web browsers using its native APIs.

One of the last major challenges for the web is to enable

human communication through voice and video: real-time

communication or RTC for short. RTC should be as natural
in a web app as entering text in a text input. Without it,

you're limited in your ability to innovate and develop new

ways for people to interact. Historically, RTC has been

corporate and complex, requiring expensive audio and video

technologies to be licensed or developed in house.

Integrating RTC technology with existing content, data, and

services has been difficult and time-consuming, particularly

on the web.

On the other hand WebRTC implemented open standards for

real-time, plug-in free video, audio, and data communication.

The need was real:

● Many web services used RTC, but needed

downloads, native apps, or plug-ins. These included

Skype, Facebook, and Hangouts.
● Downloading, installing, and updating plug-ins are

complex, error prone, and annoying.

● Plug-ins are difficult to deploy, debug, troubleshoot,

test, and maintain—and may require licensing and

integration with complex, expensive technology. It's

often difficult to persuade people to install plugins

in the first place!

The guiding principles of the WebRTC project are that its

APIs should be open source, free, standardized, built into

web browsers, and more efficient than existing technologies.

In this project we are doing following things to make our app

works:
● Get streaming audio, video, or other data.

● Get network information, such as IP addresses and

ports, and exchange it with other WebRTC clients

(known as peers) to enable connection, even though

NATs and firewalls using TURN/STUN servers.

● Coordinate signaling communication to report errors

and initiate or close sessions using WebSocket

through our Signaling server.

● Exchange information about media and client

capability, such as resolution and codec(s) using

WebSocket through our Signaling server.
● Communicate streaming audio, video, or data

through our Kurento media server.

To acquire and communicate streaming data, WebRTC

implements the following APIs:

● MediaStream gets access to data streams, such as

from the user's camera and microphone.

● RTCPeerConnection enables audio or video calling

with facilities for encryption and bandwidth

management.

● RTCDataChannel enables peer-to-peer

communication of generic data.

2. RELATED WORK

Before the existence of WebRTC, there were already many

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 103

video conferencing systems available on the market. The

most popular example is Skype. Microsoft is the company

that owns Skype. Skype uses a proprietary protocol for the

transmission of multimedia streams, plus it requires the

installation of a mobile application or desktop to access

services such as phone calls, messages, and video

conferences. Still, it is not possible to integrate a phone call

with an active video conference [16].

As mentioned Skype uses proprietary protocol and lacks the

direct P2P ability, as well as a credible security feature found

in WebRTC.
The WebRTC architecture provides end-to-end encrypted

P2P communication with audio-visual content and data being

transmitted directly. The implementation is realized to

bypass intermediary hardware servers and eliminate security

challenges like hijackers. This particular feature makes the

difference between WebRTC and other RTCs such as Skype.

WebRTC also avoids critical challenges with plug-ins such

as Flash, Silverlight, and Shockwave is the need for

downloads each time a connection is to be established. Plug-

ins can be problematic during execution; they increase

bandwidth, latency, execution time, and speed [12].
The current version of the WebRTC API was designed only

to support browser-to-browser communication. WebRTC for

"Multi-browser" communication is not inherently

recommended, especially for conference models that spread

the media load over participating peers/browsers [5].

An overview of WebRTC video conferencing architecture

using MCU is shown in [17]. However, this scenario does not

discuss any kind of signaling while the proposed test was

relying on using MCU that can be applied using a single

connection. In addition, [17] ran an application of WebRTC

video conferencing using the Licode-Erizo (MCU) over LAN

(Local Area Network). Licode offers a client API with -Erizo
that handles connections for virtual rooms and a server API

for communication. But, without using the third party

(LicodeErizo) it would not be possible to run this application.

On the other hand, as illustrated in [18] using MCU is very

expensive, and [19] mentioned that MCU is costly and it can

be rented from service providers just during a conference,

although some video conferencing CODECs are able to

support a specific number of multipoint (e.g. up to 4 users).

Adding to that, [18] emphasizes that MCU consumes a

significant amount of bandwidth.

Based on the various articles of the related work as shown
above. It can be comprehended that signaling between

browser-to-browser and server is not standardized in

WebRTC [20][21].

2.1 ARCHITECTURE OF WEBRTC

Figure 1. shows the architecture of WebRTC. As you see

there are 3 main layers in WebRTC as following

● API for web developers.

● API for browser makers.

● Customization service layer for browser makers.

Also the architecture consists of voice engine, video engine,

transport and communication tools. Each has its own
functionalities. C++ APIs are exposed to access by browser

and native frameworks and these low level APIs are not

accessible from the web application layer for security and

compatibility reasons. So, browser makers have to provide

another way to developers to use it.

To do that browser makers provide standard Javascript APIs

to access functionality of WebRTC[2][4].

Fig. 1 Architecture of WebRTC

Voice and Video Engines - Enabling RTC requires that the

browser be able to access the system hardware to capture

both voice and video. Raw voice and video streams are not

sufficient on their own. They have to be

● Processed for noise reduction and echo cancellation

● Automatically encoded with one of the optimized

narrowband or wideband audio codecs

● Used with a special error-concealment algorithm to

hide the negative effects of network jitter and packet

loss.

Sender:
● Process the raw stream to enhance quality

● Synchronize and adjust the stream to match the

continuously fluctuating bandwidth and latency

between the clients.

Receiver:

● Decode the received stream in real-time.

● Adjust the decoded stream to network jitter and

latency delays.

The fully featured audio and video engines of WebRTC take

care of all the signal processing. While all of this processing

is done directly by the browser, the web application receives

the optimized media stream, which it can then forward to its
peers using one of the JavaScript APIs!

VoiceEngine is a framework for the audio media chain, from

sound card to the network.

VideoEngine is a framework for the video media chain, from

camera to the network, and from network to the screen.

2.2 WEBRTC PROTOCOLS

Unlike all other browser communication which use

Transmission Control Protocol (TCP), WebRTC transports

its data over User Datagram Protocol (UDP).

TCP delivers a reliable, ordered stream of data. If an

intermediate packet is lost, then TCP buffers all the packets

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 104

after it, waits for a retransmission, and then delivers the

stream in order to the application.

UDP offers no promises on reliability or order of the data,

and delivers each packet to the application the moment it

arrives. In effect, it is a thin wrapper around the best-effort

delivery model offered by the IP layer of our network stacks.

Fig. 2 WebRTC Network Protocol Stack

UDP is the foundation for real-time communication in the

browser. In order to meet all the requirements of WebRTC,

the browser needs a large supporting cast of protocols and
services above it to traverse the many layers of NATs and

firewalls, negotiate the parameters for each stream, provide

encryption of user data, implement congestion and flow

control, and more!

Real-time Transport Protocol (RTP) stack -

● ICE: Interactive Connectivity Establishment

● STUN: Session Traversal Utilities for Network

Address Translation (NAT)

● TURN: Traversal Using Relays around NAT

● SDP: Session Description Protocol

● DTLS: Datagram Transport Layer Security
● SCTP: Stream Control Transport Protocol

● SRTP: Secure Real-Time Transport Protocol

ICE, STUN, and TURN are necessary to establish and

maintain a peer-to-peer connection over UDP.

DTLS is used to secure all data transfers between peers;

encryption is a mandatory feature of WebRTC.

SCTP and SRTP are the application protocols used to

multiplex the different streams, provide congestion and flow

control, and provide partially reliable delivery and other

additional services on top of UDP.

Session Description Protocol (SDP) is a data format used to

negotiate the parameters of the peer-to-peer connection.
However, the SDP ―offer‖ and ―answer‖ are communicated

out of band, which is why SDP is missing from the protocol

diagram.

2.2.1 SECURITY

There are several ways a real-time communication app or

plug-in might compromise security.

For example:

● Unencrypted media or data might be intercepted

between browsers, or between a browser and a

server.

● An app might record and distribute video or audio

without the user knowing.

● Malware or viruses might be installed alongside an

apparently innocuous plugin or app.

WebRTC has several features to avoid these problems:

● WebRTC implementations use secure protocols,

such as DTLS and SRTP.

● Encryption is mandatory for all WebRTC
components, including signaling mechanisms.

● WebRTC is not a plug-in. Its components run in the

browser sandbox and not in a separate process.

Components do not require separate installation and

are updated whenever the browser is updated.

● Camera and microphone access must be granted

explicitly and, when the camera or microphone are

running, this is clearly shown by the user interface.

Figure 3. Shows the overall topology of WebRTC which

explains call’s flow.

Fig. 3 Overall topology of WebRTC

● Bob knows Alice is calling [verified with IdP]

○ Browser can display trusted UI for Alice’s

identity

○ If in an address book, maybe name,

picture, etc.

● If no IdP, Bob knows the signaling service claims

Alice is calling.

● Alice knows Bob has answered
○ Verified with Bob’s identity provider

● Alice and Bob know media is not flowing to

innocent third parties (media consent)

● Alice and Bob know they have a secure call with

each other

○ Security details displayed via trusted UI

3. MULTIPOINT VIDEO CONFERENCE

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 105

USING KURENTO MEDIA SERVER

WebRTC, as currently implemented, only supports one-to-

one communication, but could be used in more complex

network scenarios, such as with multiple peers each

communicating with each other directly or through a

Multipoint Control Unit (MCU), a server that can handle
large numbers of participants and do selective stream

forwarding, and mixing or recording of audio and video.

Why a WebRTC media server? - WebRTC is a set of

protocols and APIs that provide web browsers and mobile

applications with Real-Time Communications (RTC)

capabilities over peer-to-peer connections. It was conceived

to allow connecting browsers without intermediate helpers or

services, but in practice this P2P model falls short when

trying to create more complex applications. For this reason,

in most cases a central media server is required.

Fig. 4 Peer-to-peer WebRTC approach vs. WebRTC through a media server.

Kurento is a WebRTC media server and a set of client APIs

making simple the development of advanced video

applications for WWW and smartphone platforms. Kurento

Media Server features include group communications,

transcoding, recording, mixing, broadcasting and routing of

audiovisual flows.

Fig. 5 Kurento Media Server capabilities

3.1 ARCHITECTURE

Figure 6. Shows the application architecture which consists

of important components like coturn STUN/TURN server for

NAT traversal, kurento media server for exchanging media,

Signalling server for handshake connections.
In the real world, WebRTC needs those servers, however

simple, so the following can happen:

● Users discover each other and exchange real-world

details.

● WebRTC client apps (peers) exchange network

information.

● Peers exchange data about media, such as video

format and resolution.

● WebRTC client apps traverse NAT gateways and

firewalls.

In other words, WebRTC needs four types of server-side

functionality:

● User discovery and communication using kurento
server

● Signaling

● NAT/firewall traversal

● Relay servers in case peer-to-peer communication

fails using coturn TURN server.

Fig. 6 Architecture diagram

3.2 MODULES

Part of this paper we will explore features including audio
calling, video calling, text based chat, screen sharing, call

recording, smart speech detection.

3.2.1 AUDIO CALL FEATURE

In this module we will be creating an audio calling facility

via WebRTC audio streams. With this feature you will be

able to make audio calls. And several users can do it

simultaneously.

Our app allows users setting their specific session

configuration before joining. Not only will you be able to

check your audio and video devices before joining the

session, but you will also be able to switch them between all

the available ones.
Besides, you can capture your own avatar thumbnail by using

the webcam and you can set your custom nickname. To join

the session, we are going to do the following steps.

● Obtain an audio stream from a microphone.

● Create the RTCPeerConnection object and establish

a connection.

Once the session is completed, we will be doing the

following steps.

● We will send a ―leave‖ message to the other users.

● We will close the RTCPeerConnection and destroy

the connection locally.

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 106

Fig. 7 Audio calling feature

3.2.2 VIDEO CALL FEATURE

In this module we will be creating a video calling facility.

With this feature you can join into a multi-party video

conference, displayed in a nice, intelligent layout. You will
be able to zoom in and zoom out and full screen any video

you want. An "active speaker" layout is provided to focus on

the user currently speaking.

Take a look at the bottom footer of the session layout: you

can check at a glance all the participants connected to the

session. This is awesome information, especially when some

user is publishing just audio and they do not appear in the

video layout.

Our app allows users setting their specific session

configuration before joining. Not only will you be able to

check your audio and video devices before joining the
session, but you will also be able to switch them between all

the available ones.

Besides, you can capture your own avatar thumbnail by using

the webcam and you can set your custom nickname.

Fig. 8 Video calling feature

3.2.3 TEXT BASED CHAT FEATURE

In this module we will be creating text-based chat features.

With this feature we will be including a nice chat already

integrated in the intelligent layout. The chat provides you an

alternative way to silently exchange messages with all your

videoconference partners.

Everything works as you expect: messages are properly

displayed with the author's name and avatar, links are

automatically formatted to allow clicking on them, users will

be subtly notified when a new message arrives, and mobile

view is specifically adapted for ease of use.

A great and advanced chat out-of-the-box!

Fig. 8 Text based chat feature

3.2.4 SCREEN SHARING FEATURE

In this module we will be creating a screen sharing feature.

With this feature you will be able to share your screen and

your webcam at the same time. And several users can do it

simultaneously!

Thanks to our intelligent layout, your screen share video will

take the lead and be shown at a larger size than the rest, and

never being cropped so no information is lost.

Moreover, you can seamlessly switch your shared screen on

the fly with the click of a button.

Fig. 9 Screen sharing

3.2.5 CALL RECORDING

In this module we will be implementing a recording feature.
With this feature you will be able to record our call both

audio and video at the same time.

Recording start and stop features will be provided to trigger

recording action.

Fig. 10 Call recording feature

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 107

3.2.6 SMART SPEECH DETECTION

In this module we will be creating a smart layout feature

using smart speech detection. With this feature you can join

into a multi-party video conference, displayed in a nice,

intelligent layout. You will be able to zoom in and zoom out
and full screen any video you want.

An "active speaker" layout is provided to focus on the user

currently speaking.

Fig. 11 Smart layout

4. CONCLUSIONS

The main goal of this paper is to implement a multipoint

video conferencing system using Kurento media server
through the WebRTC APIs, where each user is connected to

all other users, and the same video stream must be delivered

to all connections. We also focus on the description of the

video conference processing system. We have realized a

video conference system using a media server, which is a

push messaging service, where you create a channel; you will

find a unique ID that will be utilized in the app. This is

programmed in HTML, and the core of the system is a

JavaScript API. To do this, we applied protocol ICE

(Interactive Connectivity Establishment) together with the

Session Traversal Utilities for NAT (STUN). An endpoint is
aware only of its private address, and a parameter from

another LAN (Local Area Network) will be unable to use this

address for a connection. So, the STUN server is used by

each endpoint to ask the public address that stands in front of

the NAT (Network Address Translator). Now, the

connections between public addresses are more comfortable

to access.

WebRTC technology will be available through user’s

browsers to minimize installation and use of plug-in in

supporting communication. It will also improve the security

of multimedia content and help developers to create better
real-time video communication solutions.

The technology for video conference regarding the

COVID19 crisis will increase the use of the online meeting

applications, together with an improvement in the domain of

thermal imaging, which provides a healthy and secure life.

The technology for video conference regarding the COVID-

19 crisis will increase the use of the online meeting

applications, together with an improvement in the domain of

thermal imaging, which provides a healthy and secure life.

ACKNOWLEDGMENT

I am extremely happy to express my gratitude in thanking

our beloved correspondent Thiru Nithya Sundar, our

secretary Thiru G. Kamaraj, principal Prof. Dr. A. Dhanapal,

Ph.D, HOD Dr. B. Gowri Sankaran, M.Tech., MBA, Ph.D.

and all department faculty members for giving an

opportunity with all kinds of excellent infrastructure,

encouragement, guidance and motivation for the successful

completion of this paper.

REFERENCES

[1] Nayyef, Zinah & Amer, Sarah & Hussain, (2019). Peer to

Peer Multimedia Real-Time Communication System based

on WebRTC Technology. International Journal for the

History of Engineering & Technology. 2.9. 125-130.

[2] Suciu G., Anwar M., Mihalcioiu R.,Virtualized Video

and Cloud Computing for Efficient e-Learning, 13th

International Scientific Conference eLearning and Software

for Education, April 27-28, 2017.
[3] Suciu G., Anwar M., Virtualized Video conferencing for

eLearning, 14th International Scientific Conference

eLearning and Software for Education Bucharest, April 19-

20, 2018.

[4] Vasilescu C., Beceanu C., Collaborative object

recognition for parking management, 15th International

Scientific Conference eLearning and Software for Education

Bucharest, April 11-12, 2019.

[5] Elleuch, Wajdi. (2013). Models for multimedia

conference between browsers based on WebRTC. 279-284.

10.1109/WiMOB.2013.6673373.

[6] Rodríguez P, Cerviño J, Trajkovska I, Salvachúa J (2013)
Advanced Video Conferencing Services Based on WebRTC.

In: Proceeding of IADIS multi conference on computer

science and information systems.

[7] C. Cola and H. Valean, ―On multi-user web conference

using WebRTC,‖ in 18th International Conference on System

Theory, Control and Computing, ICSTCC, pp. 430–433,

2014

[8] M. Phankokkruad and P. Jaturawat, ―An Evaluation of

Technical Study and Performance for Real-Time Face

Detection Using Web Real-Time Communication,‖, no. I4ct,

pp. 162–166, 2015.
[9] T. Sandholm, B. Magnusson, and B. A. Johnsson, ―An

on-demand WebRTC and IoT device tunneling service for

hospitals,‖ in Proceedings - International Conference on

Future Internet of Things and Cloud, FiCloud, pp. 53–60,

2014.

[10] M. Deshpande, ―Integration of WebRTC with SIP –

Current Trends,‖ Int. J. Innov. Eng. Technol. Integr., vol. 6,

no. 2, pp. 92– 96, 2015

[11] Julius Flohr; Ekaterina Volodina; Erwin P.

Rathgeb(2018) FSE-NG for managing real time media flows

and SCTP data channel in WebRTC.

[12] Edim Azom Emmanuel; Bakwa Dunka Dirting (2017) A
Peer-To-Peer Architecture For Real-Time Communication

Using WebRTC.

[13] Vamis Xhagjika, Oscar Divorra Escoda, Leandro

Navarro, Vladimir Vlassov(2017) Media Streams Allocation

International Journal For Technological Research In Engineering

Volume 8, Issue 7, March-2021 (Online): 2347 - 4718

www.ijtre.com Copyright 2021. All rights reserved. 108

and Load Patterns for a WebRTC Cloud Architecture.

[14] Jansen, Bart & Goodwin, Timothy & Gupta, Varun &

Kuipers, Fernando & Zussman, Gil. (2018). Performance

Evaluation of WebRTC-based Video Conferencing. ACM

SIGMETRICS Performance Evaluation Review. 45. 56- 68.

10.1145/3199524.3199534.

[15] Sodhro Ali Hassan & Giancarlo Fortino Energy

Management during Video Transmission in WBSNs‖, 14th

IEEE International Conference on Networking, Sensing and

Control (ICNSC), Calabria, Southern Italy, May 16-18, 2017.

[16] Sodhro Ali Hassan. Power Control Algorithms for
Media Transmission in Remote Healthcare Systems, IEEE

Access,Vol.6, July, 2018.

[17] M. S. D. Vuþiü, L. Skorin-Kapov, ―The impact of

bandwidth limitations and video resolution size on QoE for

WebRTC-based mobile multi-party video conferencing

Faculty of Electrical Engineering and Computing ,

University of Zagreb,‖ in 5th ISCA/DEGA Workshop on

Perceptual Quality of Systems, pp. 59– 63, 2016.

[18] K. Fai Ng, M. Yan Ching, Y. Liu, T. Cai, L. Li, and W.

Chou, ―A P2P-MCU Approach to Multi-Party Video

Conference with WebRTC,‖ Int. J. Futur. Comput.
Commun., vol. 3, no. 5, pp. 319– 324, 2014.

[19] S. Potthast, ―Point to Point and Multipoint,‖ Jisc

community, 2016. [Online]. Available:

https://community.jisc.ac.uk/library/janetservices-

documentation/point-point-and-multipoint. [Accessed: 23-

Aug-2017].

[20] J. Jang-Jaccard, S. Nepal, B. Celler, and B. Yan,

―WebRTC-based video conferencing service for telehealth,‖

Computing, vol. 98, no. 1–2, pp. 169–193, 2016.

[21] G. Carullo, M. Tambasco, M. Di Mauro, and M. Longo,

―A Performance Evaluation of WebRTC over LTE,‖ in 12th

Annual Conference on Wireless On-demand Network
Systems and Services (WONS), pp. 170–175, 2016.

[22] G. Carullo, M. Tambasco, M. Di Mauro, and M. Longo,

―A Performance Evaluation of WebRTC over LTE,‖ in 12th

Annual Conference on Wireless On-demand Network

Systems and Services (WONS), pp. 170–175, 2016.

[23] L. O. D. Nedberg, ―Quality of Experience of WebRTC

based video communication Eirik Fosser,‖ Norwegian

University of Science and Technology, 2016.

