
International Journal For Technological Research In Engineering 

Volume 8, Issue 11, July-2021                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2021.All rights reserved.                                                                      1 

AUTOMATED DENT DETECTION USING CNN 

 
1
Himanshu Bhardwaj, 

2
Adarsh Lunthi, 

3
Hitesh Bhat, 

4
Karan Singh Rawat, 

5
Jogendra Kaushik 

1,2,3,4
student, 

5
Assistant Professor 

Department of Information Technology 

ADGITM, Delhi, India

 
Abstract: - This project is all about to reduce the time taken 

by companies for creating the insurance policy and 

completing the insurance claim. We make this project to 

revolutionize the process of applying insurance policies to 

vehicles; we try to speed up the process of insurance to the 

various vehicles by making the whole process automated. 

Our project helps the insurance company to make the 

insurance-related decision faster and remove the middleman 

between the customer and the insurance companies, Users 

can by themselves login to our platform for an insurance 

purpose and it will get their insurance done in a few minutes. 

We make an automated system with the help of ML that will 

identify the condition of vehicles and generate the amount of 

policy of insurance that will be required by the customer. 

This all will be done with a website or a simple user 

dashboard in which the user has to login to our website and 

then they will provide the required information and then will 

upload the pictures of the vehicle from required sides and in 

required and appropriate parameters. After all this procedure 

an amount will be projected from our side based on the 

condition of the vehicle and will be verified by the insurance 

issuing company whether they are satisfied by the condition 

and pass the claim further. The decision of the company will 

be projected on the dashboard and the user will have the 

choice whether they want to go for insurance or not 

depending on the claim pricing. If they are satisfied with the 

insurance amount and conditions they can apply to get their 

insurance by paying online and get the insurance paper 

through our website. So we make the whole insurance 

process online and faster by removing the middle-man and 

manual time taking processes. 

 

1. INTRODUCTION 
 

Today, in the car insurance industry, a lot of money is wasted 

due to claims leakage. Claims leakage / Underwriting 

leakage is defined as the difference between the actual claim 

payment made and the amount that should have been paid if 

all industry leading practices were applied. Visual inspection 

and validation have been used to reduce such effects. 

However, they introduce delays in the claim processing. 

There has been efforts by to few start-ups to mitigate claim 

processing time An automated system for the car insurance 

claim processing is a need of an hour. In this paper, we 

employ Convolutional Neural Network (CNN) based 

methods for classification of car damage types. Specifically, 

we consider common damage types such as bumper dent, 

door dent, glass shatter, head lamp broken, tail lamp broken, 

scratch and smash. To best of our knowledge, there is no 

publicly available dataset for car damage classification. 

Therefore, we created our own dataset by collecting images 

from web and manually annotating them. The classification 

task is challenging due to factors such as large inter-class 

similarity, barely visible damages. We experimented with 

many techniques such as directly training a CNN, pre-

training a CNN using auto-encoder followed by fine-tuning, 

using transfer learning from large CNNs trained on Imagenet 

and building an ensemble classifier on top of the set of pre-

trained classifiers. We observe that transfer learning 

combined with ensemble learning works the best. We also 

device a method to localize a particular damage type. 

Experimental results validate the effectiveness of our 

proposed solution. Object Detection is the challenging 

artificial intelligence problem of detecting any desired object 

from any image containing multiple objects in a single 

image. It requires both image understanding from the domain 

of computer vision and a semantic segmentation analysis of 

an image. It is important to consider and test multiple ways 

to frame a given predictive modeling problem and there are 

indeed many ways to frame the problem of detecting object 

in an image. 

  

2. DATASET DESCRIPTION 
  

As far as we know there is no publicly available dataset for 

car damage classification, without a large and diverse dataset 

it becomes rather difficult to apply standard computer vision 

techniques, therefore we created our own dataset by 

collecting images using web crawling as done by We 

manually filtered and categorized images into 7 commonly 

observed damage types We also collected images belonging 

to No Damage class. Different damage types; bumper dent, 

scratches, door dent, glass shatter, head-lamp broken, tail-

lamp broken and smashed respectively. For the purpose of 

detection, we manually annotated different types of damaged 

regions. 

 

3. CONVOLUTION NEURAL NETWORK 
 

The human brain processes a huge amount of information the 

second we see an image. Each neuron works in its own 

receptive field and is connected to other neurons in a way 

that they cover the entire visual field. Just as each neuron 

responds to stimuli only in the restricted region of the visual 

field called the receptive field in the biological vision system, 

each neuron in a CNN processes data only in its receptive 

field as well. The layers are arranged in such a way so that 

they detect simpler patterns first (lines, curves, etc.) and 

more complex patterns (faces, objects, etc.) further along. By 

using a CNN, one can enable computer eyesight. The 



International Journal For Technological Research In Engineering 

Volume 8, Issue 11, July-2021                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2021.All rights reserved.                                                                      2 

convolution layer is the core building block of the CNN. It 

carries the main portion of the network‟s computational load. 

This layer performs a dot product between two matrices, 

where one matrix is the set of learnable parameters otherwise 

known as a kernel, and the other matrix is the restricted 

portion of the receptive field. The kernel is spatially smaller 

than an image but is more in-depth. This means that, if the 

image is composed of three (RGB) channels, the kernel 

height and width will be spatially small, but the depth 

extends up to all three channels. During the forward pass, the 

kernel slides across the height and width of the image-

producing the image representation of that receptive region. 

This produces a two-dimensional representation of the image 

known as an activation map that gives the response of the 

kernel at each spatial position of the image. The sliding size 

of the kernel is called a stride. If we have an input of size W 

x W x D and Dout number of kernels with a spatial size of F 

with stride S and amount of padding P, then the size of 

output volume can be determined by the following formula: 

 

Wout = W-F+2P/S+1 

 

4. TRAINING A CNN 
 

 

1. Download the tensorflow models zip file from the 

link given below and extract the content from it. 

'https://github.com/tensorflow/models/archive/7c0e458.zip' 

 

2. Download and extract its content to 

models\research\object_detection folder. 

http://download.tensorflow.org/models/object_detection/faste

r_rcnn_inception_v2_coco_ 2018_01_28.tar.gz' 

 

3.Create environment conda create -n objdet python=3.6.5 

anaconda 

 

4.Activate the environment 

 

5.activate objdet 

 

6.Run this to install all the required packages 

pip install -r 

models\research\object_detection\requirements.txt 

 

7.Set required paths set 

PYTHONPATH=C:\Users\yt\Documents\tf1\models;C:\User

s\yt\Documents\tf1\mo 

dels\research;C:\Users\yt\Documents\tf1\models\research\sli

m set PATH=%PATH%;PYTHONPATH 

 

8.Compile Protobufs protoc object_detection/protos/*.proto -

-python_out=. 

 

9.Run Setup 

cd Documents/tf1/models/research 

 

python setup.py build 

 

python setup.py install 

  

 

10.Add all training images to images/train_unaugmented and 

testing images to images/test. 

 

11. Label images using LabelImg. 

 

12. Make labels from xml files for  

images/train_unaugmented and images/test. which can be 

found as 

„images/train_unaugmented_labels.csv‟ & 

„images/test_labels.csv‟. python xml_to_csv.py 

 

13. To augment images. Images inside images\training 

will be augmented and for each image 4 new images will be 

generated. 

 

14. python ImageAugmentor_imgaug.py 

 

15. To add the class to detect in Images. Open 

generate_tfrecord.py file and change the label map starting at 

line 

31 with your own label map. 

 

16.Then generate tfrecords for training purpose. This will 

generate train.record and a test.record file in 

\object_detection 

 

17. python generate_tfrecord.py --

csv_input=images\train_labels.csv 

 

--image_dir=images\train --output_path=train.record python 

generate_tfrecord.py -- csv_input=images\test_labels.csv --

image_dir=images\test 

 

--output_path=test.record 

 

18. Create a label map inside object_detection\training 

folder with .pbtxt extension. Sample label map is given 

below. 

 

item { 

id: 1 

 

name: 'class_name' 

 

       } 

 

19. Configure training: Navigate to 

\object_detection\samples\configs and copy the 

faster_rcnn_inception_v2_pets.config file into the 

\object_detection\training directory. Then, open the file there 

are several changes to make to the .config file, mainly 

changing the number of classes and examples, and adding the 

file paths to the training data. 

 

20 .Line 9. Change num_classes to the number of different 

objects you want the classifier to detect. 



International Journal For Technological Research In Engineering 

Volume 8, Issue 11, July-2021                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2021.All rights reserved.                                                                      3 

 

1. Line 106. Change fine_tune_checkpoint to: 

fine_tune_checkpoint:"C:/tensorflow1/models/research/objec

t_detection/faster_rcnn_inception_v2_coco_2018_01 _28/ 

model.ckpt" 

 

2. Lines 123 and 125. In the train_input_reader 

section, change input_path and label_map_path to: 

input_path : 

"C:/tensorflow1/models/research/object_detection/train.recor

d" label_map_path: 

"C:/tensorflow1/models/research/object_detection/training/la

belmap.pbtxt" 

 

3. Line 130. Change num_examples to the number of 

images you have in the \images\test directory. 

 

4. Lines 135 and 137. In the eval_input_reader section, 

change input_path and label_map_path to: input_path : 

"C:/tensorflow1/models/research/object_detection/test.record

"label_map_path:"C:/tensorflow1/models/research/object_de

tection/training/labelmap.pbtxt" 

 

21. To Train 

 

python train.py --logtostderr --train_dir=training/ 

--

pipeline_config_path=training/faster_rcnn_inception_v2_pet

s.config 

  

1. FOR RESUMING TRAINING: make sure to update 

the „fine_tune_checkpoint‟ parameter inside 

„training/faster_rcnn_inception_v2_pets.config‟ file with the 

latest name of latest model which you have after training 

inside „training‟ folder and then run the below command. 

 

python train.py --logtostderr --train_dir=../training/ --

pipeline_config_path=../training/faster_rcnn_inception_v2_p

ets.config 

 

2. To Test 

 

python eval.py --logtostderr --eval_dir=../eval/ 

 

--

pipeline_config_path=../training/faster_rcnn_inception_v2_p

ets.config 

 

--checkpoint_dir=../training 

 

3. For Tensorboard (Open command prompt as admin 

and then change the path to objecte_detection folder in it) 

 

4. Training Tensorboard 

 

tensorboard --logdir=training 

 

5. Testing Tensorboard 

6. tensorboard --logdir=eval 

 

7. To Generate inference graph; First move old 

„saved_model‟ folder and „frozen_inference_graph.pb‟ to a 

safe place(if those exists). Make sure to update the value of 

xxxxx in the below code to match the model number in 

your training folder. python export_inference_graph.py --

input_type image_tensor --pipeline_config_path. 

training/faster_rcnn_inception_v2_pets.config--

trained_checkpoint_prefix training/model.ckpt-xxxxx --

output_directory inference_graph 

 

 

8. To try it on custom images; Put all the images in 

images/extras folder then run script and see results in 

images/processed folder 

 

9. python Object_detection_image.py 

 

5. TRANSFER LEARNING 
 

So as we have problems of over-fitting on small datasets to 

avoid this we plan to use the Transfer learning instead of 

training the CNN model from scratch this approach results in 

the significant improvement on classification problems when 

the available dataset to us is limited or scarce. So we decided 

to carry forward our CNN training on the already available 

large dataset. Also training our car dataset on large dataset it 

is better to learn features on a more different or diverse 

datasets. After training on Image net dataset, we retrain the 

classifier on top of the CNN on our dataset. We also fine-

tune all the layers of the CNN while keeping in mind that the 

earlier layers learn more generic features that are common in 

all classification tasks . 

 

6. VGG19 
 

Convolutional Neural Networks (CNN) have been used for 

several image classification tasks. They require a lot of data 

and time to train. However, sometimes the data set may be 

limited and not enough to train a CNN from scratch. In such 

a scenario it is helpful to use a pre-trained CNN, which has 

been trained on a large data set. We will use VGG-19 pre-

trained CNN, which is a 19-layer network trained on  

Imagenet .VGG-19 is a convolutional neural network that is 

19 layers deep. You can load a pretrained version of the 

network trained on more than a million images from the 

ImageNet database.The pretrained network can classify 

images into 1000 object categories, such as keyboard, mouse, 

pencil, and many animals. As a result, the network has 

learned rich feature representations for a wide range of 

images. The network has an image input size of 224-by-224. 

For more pretrained networks in MATLAB. 

 

7. CONCLUSION 

 

In this paper, we proposed a deep learning based solution for 

car damage classification. Since there was no publicly 

available dataset, we created a new dataset by collecting 



International Journal For Technological Research In Engineering 

Volume 8, Issue 11, July-2021                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2021.All rights reserved.                                                                      4 

images from web and manually annotating them. We 

experimented with multiple deep learning based techniques 

such as training CNNs from random initialization, 

Convolution Autoencoder based pre-training followed by 

supervised fine tuning and transfer learning. We observed 

that the transfer learning performed the best. We also note 

that only car specific features may not be effective for 

damage classification. It thus underlines the superiority of 

feature representation learned from the large training set. 

 

 
          Fig 1 Sign Up Page                                        Fig 2 Login Page 
 

 
Fig 3 Client Information Page 

 

 
Fig 4 Dent Detection without score 

 
We build an application which revolves around solving the 

time issues that were occurring when a user was trying to 

apply for an insurance policy for their vehicle because it was 

a very cumbersome experience involving many stages. We 

tried to reduce one stage by automating the dent detection 

part through which the amount of the policy is decided. Our 

project can be used by various company agents and 

companies to fasten the process. The prediction of the 

amount would be done by analyzing the following 

parameters: 

 

1. Condition of the car 

2. Amount of dents 

3. Amount of scratches 

 

 

REFERENCES 

 
[1] http://www.ey.com/publication/vwluassets/ey-

doesyour-firm-need-a-claims-leakage-study/ey-

does-yourfirmneed-a-claim -leakage-study.pdf 

 

[2] https://tractable.ai/ 

 

[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, 

Rich feature hierarchies for accurate object 

detection and semantic segmentation," in The IEEE 

Conference on Computer Vision and Pattern 

Recognition (CVPR), June 2014. [4] J. R. R. 

Uijlings, K. E. A. van de Sande, T. Gevers, and A. 

W. M.Smeulders, Selective search for object 

recognition," International Journal of Computer 

Vision, vol. 104, pp. 154{171, Sep 2013. 

 

[4] “http://www.tractable.io/,”. 

 

[5] Bengio Y. Lecun Y., Bottou L. and Haffner P., 

“Gradient-based learning applied to document 

recognition,”Proceedings of IEEE, vol. 86, no. 11, 

1998. 

 

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. 

Hinton, “Imagenet classification with deep 

convolutional neural networks,” in Advances in 

Neural Information Processing Systems 25, F. 

Pereira, C. J. C. Burges, L. Bottou, and K. Q. 

Weinberger, Eds., pp. 1097–1105. Curran 

Associates, Inc., 2012. 

 

[7] Michael Giering Mark R. Gurvich Soumalya Sarkar, 

Kishore K. Reddy, “Deep learning for structural 

health monitoring: A damage characterization 

application,” in Annual Conference of the 

Prognostics and Health Management Society, 2016. 

 

[8] Dumitru Erhan, Yoshua Bengio, Aaron Courville, 

Pierre-Antoine Manzagol, Pascal Vincent, and 

Samy Bengio,“Why does unsupervised pre-training 

help deep learning?,” Journal of Machine Learning 

Research, vol. 11, no.Feb, pp. 625–660, 2010. 

  

[9] Jonathan Masci, Ueli Meier, Dan Cires¸an, and 

Jurgen ¨ Schmidhuber, “Stacked convolutional auto-

encoders for hierarchical feature extraction,” in 

International Conference on Artificial Neural 

Networks. Springer, 2011, pp. 52–59. 
 
 

 

http://www.ey.com/publication/vwluassets/ey-
http://www.ey.com/publication/vwluassets/ey-

