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Abstract: - A large number of algorithms to train agents of 

the game have been developed in recent years. Most of them 

use artificial intelligence techniques that need a training 

stage. In this context, this paper aims to develop an agent 

that can be trained without the need of a training stage and 

instead uses NEAT to evolve that agent capable of playing 

Super Mario. NEAT is used to find the neural network 

architecture that can perfectly play the game and allows 

agents to improve by playing the game. The algorithm starts 

with the idea of basic rules of the game like all the 

conditions about how an agent can die and what different 

keys it can use as input to agent and aim of the game like to 

reach the finish line and all the pixels representing agent, 

enemy and blocks are fed to the algorithm. NEAT uses all 

this data to find optimal values of weight and bias for the 

Neural Network by maximizing the Fitness function which 

tells it how good it is doing at a certain time during 

training. To simulate the Mario game OpenAI gym-retro is 

used that makes it possible for NEAT to get updated states 

of agent and its environment. Coupling the minimal 

training strategy, openAI, a representative fitness and 

NEAT, the algorithm was able to find a neural network that 

allowed it to finish the game and with more training 

achieved the almost perfect behavior in the game. This 

paper reviewed how genetic algorithms like NEAT can be 

used to train AI and make it learn in complex 

environments. But there are some issues with this 

approach, like the need to define a good fitness function as 

with good fitness function AI can learn well but with poor 

fitness function AI may never learn at all. 
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1. INTRODUCTION 
 

The most important parameter to make any AI agent or 

machine learning modal to learn is to have Training data on 

which model can be trained and Test data on which it can be 

tested . Getting such data introduces a new level of 

complexity to develop any good agent that is to make good 

or unbiased Training or Test data which is very time 

consuming and even very hard to make in certain cases. That 

is where Neuroevolution technique comes into play as It 

makes it possible for Artificial Neural Networks(ANN) to 

learn/evolve in unsupervised learning problems(where there 

is no input and output data to train or test agent). With the 

help of Neuroevolution technique ANN doesn't need to 

depend on correct output value, which helps it to calculate 

cost function which in turn makes it possible to optimize the 

network settings though Gradient descent algorithm [7]. 

Neuroevolution technique takes its inspiration from how a 

human species as whole develops and continues to survive 

because of evolution which allows humans to adapt to 

various dietary or survival needs [2]. So, to see this technique 

in action, the game Super Mario shows itself as a promising 

virtual testing environment to optimize agents (Mario 

character). It is a popular game in which the aim of the player 

is to reach the end of a certain level without touching any 

enemy or falling off a block which kills the player. The 

player's moment depends on four keys. In this type of 

problem, the whole learning process happens with trial and 

error. The Training data is developed when the agent 

interacts with its environment. In the beginning of the game 

there is no information about what actions should be taken or 

whether certain actions taken are good or bad which make 

agents' communication with the environment random. In this 

context, the use of Super Mario as an environment for 

Neuroevolution algorithms tests is an excellent study, since 

the obstacle-transposes many challenges which find 

applications in many fields like Smart navigation for Robots, 

game development etc. Because of the challenge of finding 

path to the end of level without dying makes using 

Neuroevolution as the best choice as it can help us find best 

configuration of an ANN without depending on a set of 

correct actions within the Super Mario, also technique of 

neuroevolution requires only a value that translates agent 

performance at the end of its lifetime, and through the choice 

of best performance of various agents and combinations of 

various setting the technique finds the ANN that can direct 

agent from start to finish. In this work we use a 

Neuroevolution algorithm called Neuroevolution of 

Augmenting Topologies(NEAT) [6] in the Super Mario 

environment, using a minimal strategy NEAT makes a 

simple agent to play the game. The choice of NEAT is 

decided by the fact that it starts from very simple 

configuration of agent very it only knows how to move and 

complicates this configuration over generations to include 

enemies, and other states of game and making agent more 

better with newer generations making it possible for agent to 

learn to navigate its way from start to finish line without the 

need of any training data [8]. 

 

2. STRUCTURE OF ANN 
 

It’s actually quite similar to the human brain. Typically, an 

ANN is composed of interconnected processing units called 

nodes or neurons. The connection between the neurons is 

called synaptic weights, just like the synapses in your brain 

that receive signals from your environment. The neurons can 
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be classified as input, hidden or output, all of which varies 

depending on the task at hand. For instance, if you want to 

classify an image, the inputs can be the features of your 

dataset and the many outputs are classes to predict. To make 

it simpler, think of the baby when the baby is born, the baby 

sees oranges and apples (the inputs) but they don't know how 

to name them yet, just as how our naive neural network 

doesn't know what names to put on images. After a couple 

rounds of practice, the baby’s brain picks up the words, and 

in their mind, they know that’s an apple. Similarly, our ANN 

post-training will ideally be able to classify oranges and 

apples with an ideally high accuracy rate. The architecture of 

ANN is characterized by the specific structure of nodes and 

connections that create a certain network. Usually, the 

topologies of ANNs are predetermined by the programmer, 

but the problem is that they may not be the most efficient 

model. That’s why we have something known as back 

propagation, or more intuitively speaking “the back 

propagation of errors”. Like how it sounds, the ANN 

compares the predicted output with the actual output. Then, it 

essentially uses this information to adjust the synaptic weight 

with the hope to minimize the cost/error function [4]. 

 

Genetic Evolution Algorithm: Genetics algorithm was 

inspired by Charles Darwin’s theory of natural selection. 

This algorithm uses the process of natural selection where the 

fittest individuals are chosen for reproduction in order to 

produce offspring of the next generation [10]. 

 

Here’s how it works in nature on a macro scale: 

 

I. The process of natural selection starts with a 

population with individuals who have different 

characteristics. Let’s take the example of a giraffe 

population that has both long-necked and short-

necked giraffes. These giraffes have different 

phenotypes because they have different genomes 

(think codes for life). 

 

II. The long-necked giraffes can more easily reach the 

leaves at the top and thus have a higher survival 

advantage than their short-necked peers. As a result, 

more of them will survive and pass their genes to 

the next generation. In other words, the long-necked 

giraffes are considered to be more fit. 

 

III. The fittest giraffes would survive and through 

hundreds or maybe thousands of generations, all 

individuals in the giraffe population will have long 

necks. In short, nature favors the survival of fitness. 

If you used to think that giraffes have always had 

long necks and think that this is quite interesting, 

let’s dive even 

deeper into the molecular level of things and understand the 

root of evolution. 

 

A genetic algorithm provides a potential solution to a 

problem (the phenotype) in a chromosome-like data structure 

called the genotype or genome. 

Recapitulating this process of natural selection, the genetic 

algorithm creates an initial population of random genomes, 

which are materialized as phenotypes and evaluated on the 

basis of some fitness function. Basically, using genetic 

algorithms, you can determine the “survival of the fittest 

ANNs. 

 

NEAT Algorithm: As the name implies, the architectures of 

the neural networks, i.e. topology, becomes better and better 

at completing a certain task in the course of evolution. The 

genome of an ANN contains two parts: node genes and 

connection genes. Each node gene specifies a single neuron. 

On the other hand, the connection genes represent the 

connection between the neurons, the weight of the 

connection, whether or not the connection is enabled, and a 

historical marker that provides information about the 

ancestral history of the gene[6]. 

 

Before NEAT, there were a handful of attempts at evolving 

topologies of networks that were somewhat successful, 

however, they identified a series of problems that would need 

to be overcome before the technology could actually do 

anything incredibly useful. What made NEAT and its paper 

so interesting is some of the solutions it proposed to these 

problems, solutions that still make this paper relevant today 

[1]. 

 

3. METHODOLOGY 
 

Two components are required to this work: fitness function 

calculation and phenotype settings. 

 

A. Fitness 

 

To compute the fitness of the agent we use distance covered 

by the agent and the fitness function is denoted by sigmoid. 

 

Here, x is the horizontal distance. 

 

The domain of sigmoid function is real numbers, with return 

(response) value commonly monotonically increasing but 

could be decreasing. Sigmoid functions most often show a 

response in the range 0 to 1. Another commonly used range 

is from −1 to 1 [10] . 
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B. Phenotype settings 

 

Earlier, there were a handful of attempts at evolving 

topologies of networks that were somewhat successful; 

however, they identified a series of problems that would need 

to be overcome before the technology could actually do 

anything incredibly useful. What made NEAT and its paper 

so interesting is some of the solutions it proposed to these 

problems, solutions that still make this paper relevant today 

[1]. 

 

Encoding 

 

We have a genotype and a phenotype in biology. A genotype 

is the genetic representation of a creature and the phenotype 

is the physical representation of the creature. Evolutionary 

algorithms always mirror biology, neuroevolution being no 

different in this respect. 

 

The idea of encoding comes from the question of how we 

wish to represent individuals' genetics in our algorithm. The 

way in which we encode our individuals lays out the path for 

how our algorithm will handle the key evolutionary 

processes: selection, mutation, and crossover (also known as 

recombination). Any encoding will fall into one of two 

categories, direct or indirect. 

 

A direct encoding will specify every information about an 

individual. If it represents a neural network this means that 

each gene will directly be connected to some node, 

connection, or property of the network. This can be a binary 

encoding of 1s and 0s, a graph encoding (linking various 

nodes by weighted connections), or something even more 

complex. The point is that there will always be a direct link 

between genotype and phenotype that is very obvious and 

readable. 

An indirect encoding is the exact opposite of direct. Instead 

of directly specifying what a structure may look like, indirect 

encodings tend to specify protocol or parameters of processes 

for creating an individual. That’s why indirect encodings are 

much more compact. The other side is that setting the rules 

for an indirect encoding can result in a heavy bias within the 

search space, therefore, it is much harder to create an indirect 

encoding without complete knowledge about how the 

encoding will be used. 

The NEAT algorithm chooses a direct encoding technique 

because of this. Their representation is a little more complex 

than a simple graph or binary encoding, however, it is still 

understandable. It has two lists of genes, a series of nodes 

and a series of connections. To see what this looks like 

visually, we used a picture here: 

 

 
Input and output nodes are not evolved within the node gene 

list. Hidden nodes can be added or deleted. As for connection 

nodes, they specify where a connection comes into and out 

of, the weight of such connection, whether or not the 

connection is enabled, and an innovation number (something 

we’ll discuss in the next section). 

 

 

Mutation 

 

In NEAT, mutation can either mutate existing connections or 

can add new links to a network. If a new link is added 

between a start and end node, it is randomly assigned some 

weight [3]. 

 

If a new node is added in structure, it will be placed between 

two nodes that are already connected. The previous 

connection is disabled (though it is still present within the 

genome). The previous start node is connected to the new 

node with the weight of the old connection and the new node 

is connected with the previous end node with a weight of 1. 

This was found to assist mitigate issues with new structural 

additions.

 
 

Competing Conventions 
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Another big problem in evolving the topologies of neural 

networks is something that the NEAT paper calls “competing 

conventions.” The thought is that just blindly crossing over 

the genomes of two neural networks could end in networks 

that are horribly mutated and non-functional. If two networks 

are dependent on central nodes that both get relinked out of 

the network, we have an issue 

 
 

More than that, genomes are often of various sizes. How can 

we align genomes that don’t seem to be obviously 

compatible? In biology, this is nursed through an idea called 

homology. Homology is the alignment of chromosomes 

based on matching genes for a specific characteristic. Once 

that happens, crossover can happen with much less chance of 

error than if chromosomes were blindly mixed together. 

 

NEAT solves this issue through the usage of historical 

markings (as shown in figure). By assigning new evolutions 

with a historical number, when it comes time to crossover 

two individuals, this can be done with much less chance of 

making individuals that are non-functional. Each gene can be 

aligned and potentially crossed-over. Each time a new node 

or new type of connection occurs, a historical marking is 

assigned, allowing easy alignment when it comes to breeding 

two of our individuals. Shown in fig. 

 
 

 

Speciation 

 

A very interesting idea put forth in NEAT was that the 

majority of new evolutions aren’t good ones. In fact, adding 

a new connection or node before any optimization of weights 

has occurred often leads to a lower performing individual. 

This will put new structures at a disadvantage. How can we 

protect new structures and permit them to optimize before we 

remove them from the population entirely? NEAT suggests 

speciation. 

 

Speciation simply splits up the population into several 

species supporting the similarity of topology and 

connections. If the competing convention problem still 

existed, this would be very hard to measure. However, since 

NEAT uses historical markings in its encoding, this becomes 

much easier to calculate. A function for deciding how to 

speciate is given within the paper, but the important part to 

note is that individuals in a population only have to compete 

with other individuals within that species. This allows for 

new structures to be created and optimized without fear that 

it will be eliminated before it can be truly explored. 

 

More than that, NEAT moves things one step forward 

through something called explicit fitness sharing. That means 

that individuals share how well they are doing across the 

species, boosting up higher performing species, though still 

allowing other species to explore their structure optimization 

before being out evolved. 

 

Minimal Structure 

 

Major goal of the NEAT paper was to make a framework for 

evolving networks that allowed for minimal networks to be 

evolved. The authors didn’t want to make an algorithm that 

first found good networks and then had to scale back the 

number of nodes and connections after the fact. Instead, the 

thought was to create an algorithm that started with the 

minimal amount of nodes and connections, evolving 

complexity as time goes on if and as long as it is found to be 

useful and necessary. 

 

NEAT sets up their algorithm to evolve minimal networks by 

starting all networks with no hidden nodes. Each individual 

within the initial population is simply input nodes, output 

nodes, and a series of connection genes connected between 

them. By itself, this may not necessarily work, but when 

combined with the idea of speciation, this proves to be a 

strong idea in evolving minimal, yet high-performing 

networks [5] . 

 

4. RESULT 
 

All AI were trained using the pink box as inputs. . For this 

we ran several populations on level 1-1 with the same 

random seed. The random seed was to possess populations 

select, crossover, and mutate an equivalent. There is a 

tradeoff between accuracy and speed for training. With more 

inputs, Mario could be ready to learn tons more about the 
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environment, however, it's going to take significantly longer. 

We ran for a number of generations to see which populations 

learned faster. We then took the input dimensions of the best 

population and restarted all training with those dimensions 

that it will be eliminated before it can be truly explored. 

More than that, NEAT moves things one step forward 

through something called explicit fitness sharing. That means 

that individuals share how well they are doing across the 

species, boosting up higher performing species, though still 

allowing other species to explore their structure optimization 

before being out evolved. 

 

Minimal Structure 

 

Major goal of the NEAT paper was to make a framework for 

evolving networks that allowed for minimal networks to be 

evolved. The authors didn’t want to make an algorithm that 

first found good networks and then had to scale back the 

number of nodes and connections after the fact. Instead, the 

thought was to create an algorithm that started with the 

minimal amount of nodes and connections, evolving 

complexity as time goes on if and as long as it is found to be 

useful and necessary. 

 

NEAT sets up their algorithm to evolve minimal networks by 

starting all networks with no hidden nodes. Each individual 

within the initial population is simply input nodes, output 

nodes, and a series of connection genes connected between 

them. By itself, this may not necessarily work, but when 

combined with the idea of speciation, this proves to be a 

strong idea in evolving minimal, yet high-performing 

networks [5] . 

 

5. RESULT 
 

All AI were trained using the pink box as inputs. . For this 

we ran several populations on level 1-1 with the same 

random seed. The random seed was to possess populations 

select, crossover, and mutate an equivalent. There is a 

tradeoff between accuracy and speed for training. With more 

inputs, Mario could be ready to learn tons more about the 

environment, however, it's going to take significantly longer. 

We ran for a number of generations to see which populations 

learned faster. We then took the input dimensions of the best 

population and restarted all training with those dimensions. 

  

It’s extremely precise and many players would never be able 

to actually do one. This AI, on the other hand, was able to 

figure out how to perform a wall jump and utilize it to get 

past a hole. One thing that AI’s are being used to find 

exploits and vulnerabilities in systems. The AI has no idea 

that it should not be able to do something or that it should. It 

simply tries all possible ways to maximize fitness. 

Evaluating all of the results together it can be seen that our 

methodology turned the game into a problem simple to solve 

by the algorithm. Those results show that training agents 

using a very restricted training environment can lead to 

optimal behaviors. 

 

6. CONCLUSION 
 

In this work, the authors propose a minimal training strategy 

to generate agents capable of achieving optimal scores and 

passing different levels in the game Super Mario. 

 

This implementation of mar I/O gives better results than a 

human after few generations of learning. This shows that this 

strategy can find optimal solutions in a short number of 

generations but some levels are seems impossible to beat. 

That’s all there is to it ,with a few adjustments, this 

framework is applicable to any game for the NES, SNES, 

SEGA Genesis, and more. 
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