
International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 7

MAR I/O

1
Anshul Hudda,

2
Kartik Goel,

3
Pawan Kumar Rai,

 4
Shubham Jadon,

5
Ms. Priyanka Singh

1,2,3,4
Student (B.Tech 8th sem),

5
Professor

Department of Information Technology

Dr. Akhilesh Das Gupta Institute of Technology & Management, New Delhi, India

Abstract: - A large number of algorithms to train agents of

the game have been developed in recent years. Most of them

use artificial intelligence techniques that need a training

stage. In this context, this paper aims to develop an agent

that can be trained without the need of a training stage and

instead uses NEAT to evolve that agent capable of playing

Super Mario. NEAT is used to find the neural network

architecture that can perfectly play the game and allows

agents to improve by playing the game. The algorithm starts

with the idea of basic rules of the game like all the

conditions about how an agent can die and what different

keys it can use as input to agent and aim of the game like to

reach the finish line and all the pixels representing agent,

enemy and blocks are fed to the algorithm. NEAT uses all

this data to find optimal values of weight and bias for the

Neural Network by maximizing the Fitness function which

tells it how good it is doing at a certain time during

training. To simulate the Mario game OpenAI gym-retro is

used that makes it possible for NEAT to get updated states

of agent and its environment. Coupling the minimal

training strategy, openAI, a representative fitness and

NEAT, the algorithm was able to find a neural network that

allowed it to finish the game and with more training

achieved the almost perfect behavior in the game. This

paper reviewed how genetic algorithms like NEAT can be

used to train AI and make it learn in complex

environments. But there are some issues with this

approach, like the need to define a good fitness function as

with good fitness function AI can learn well but with poor

fitness function AI may never learn at all.

Keywords: - artificial intelligence; autonomous agents;

neuroevolution; super mario bros

1. INTRODUCTION

The most important parameter to make any AI agent or

machine learning modal to learn is to have Training data on

which model can be trained and Test data on which it can be

tested . Getting such data introduces a new level of

complexity to develop any good agent that is to make good

or unbiased Training or Test data which is very time

consuming and even very hard to make in certain cases. That

is where Neuroevolution technique comes into play as It

makes it possible for Artificial Neural Networks(ANN) to

learn/evolve in unsupervised learning problems(where there

is no input and output data to train or test agent). With the

help of Neuroevolution technique ANN doesn't need to

depend on correct output value, which helps it to calculate

cost function which in turn makes it possible to optimize the

network settings though Gradient descent algorithm [7].

Neuroevolution technique takes its inspiration from how a

human species as whole develops and continues to survive

because of evolution which allows humans to adapt to

various dietary or survival needs [2]. So, to see this technique

in action, the game Super Mario shows itself as a promising

virtual testing environment to optimize agents (Mario

character). It is a popular game in which the aim of the player

is to reach the end of a certain level without touching any

enemy or falling off a block which kills the player. The

player's moment depends on four keys. In this type of

problem, the whole learning process happens with trial and

error. The Training data is developed when the agent

interacts with its environment. In the beginning of the game

there is no information about what actions should be taken or

whether certain actions taken are good or bad which make

agents' communication with the environment random. In this

context, the use of Super Mario as an environment for

Neuroevolution algorithms tests is an excellent study, since

the obstacle-transposes many challenges which find

applications in many fields like Smart navigation for Robots,

game development etc. Because of the challenge of finding

path to the end of level without dying makes using

Neuroevolution as the best choice as it can help us find best

configuration of an ANN without depending on a set of

correct actions within the Super Mario, also technique of

neuroevolution requires only a value that translates agent

performance at the end of its lifetime, and through the choice

of best performance of various agents and combinations of

various setting the technique finds the ANN that can direct

agent from start to finish. In this work we use a

Neuroevolution algorithm called Neuroevolution of

Augmenting Topologies(NEAT) [6] in the Super Mario

environment, using a minimal strategy NEAT makes a

simple agent to play the game. The choice of NEAT is

decided by the fact that it starts from very simple

configuration of agent very it only knows how to move and

complicates this configuration over generations to include

enemies, and other states of game and making agent more

better with newer generations making it possible for agent to

learn to navigate its way from start to finish line without the

need of any training data [8].

2. STRUCTURE OF ANN

It’s actually quite similar to the human brain. Typically, an

ANN is composed of interconnected processing units called

nodes or neurons. The connection between the neurons is

called synaptic weights, just like the synapses in your brain

that receive signals from your environment. The neurons can

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 8

be classified as input, hidden or output, all of which varies

depending on the task at hand. For instance, if you want to

classify an image, the inputs can be the features of your

dataset and the many outputs are classes to predict. To make

it simpler, think of the baby when the baby is born, the baby

sees oranges and apples (the inputs) but they don't know how

to name them yet, just as how our naive neural network

doesn't know what names to put on images. After a couple

rounds of practice, the baby’s brain picks up the words, and

in their mind, they know that’s an apple. Similarly, our ANN

post-training will ideally be able to classify oranges and

apples with an ideally high accuracy rate. The architecture of

ANN is characterized by the specific structure of nodes and

connections that create a certain network. Usually, the

topologies of ANNs are predetermined by the programmer,

but the problem is that they may not be the most efficient

model. That’s why we have something known as back

propagation, or more intuitively speaking “the back

propagation of errors”. Like how it sounds, the ANN

compares the predicted output with the actual output. Then, it

essentially uses this information to adjust the synaptic weight

with the hope to minimize the cost/error function [4].

Genetic Evolution Algorithm: Genetics algorithm was

inspired by Charles Darwin’s theory of natural selection.

This algorithm uses the process of natural selection where the

fittest individuals are chosen for reproduction in order to

produce offspring of the next generation [10].

Here’s how it works in nature on a macro scale:

I. The process of natural selection starts with a

population with individuals who have different

characteristics. Let’s take the example of a giraffe

population that has both long-necked and short-

necked giraffes. These giraffes have different

phenotypes because they have different genomes

(think codes for life).

II. The long-necked giraffes can more easily reach the

leaves at the top and thus have a higher survival

advantage than their short-necked peers. As a result,

more of them will survive and pass their genes to

the next generation. In other words, the long-necked

giraffes are considered to be more fit.

III. The fittest giraffes would survive and through

hundreds or maybe thousands of generations, all

individuals in the giraffe population will have long

necks. In short, nature favors the survival of fitness.

If you used to think that giraffes have always had

long necks and think that this is quite interesting,

let’s dive even

deeper into the molecular level of things and understand the

root of evolution.

A genetic algorithm provides a potential solution to a

problem (the phenotype) in a chromosome-like data structure

called the genotype or genome.

Recapitulating this process of natural selection, the genetic

algorithm creates an initial population of random genomes,

which are materialized as phenotypes and evaluated on the

basis of some fitness function. Basically, using genetic

algorithms, you can determine the “survival of the fittest

ANNs.

NEAT Algorithm: As the name implies, the architectures of

the neural networks, i.e. topology, becomes better and better

at completing a certain task in the course of evolution. The

genome of an ANN contains two parts: node genes and

connection genes. Each node gene specifies a single neuron.

On the other hand, the connection genes represent the

connection between the neurons, the weight of the

connection, whether or not the connection is enabled, and a

historical marker that provides information about the

ancestral history of the gene[6].

Before NEAT, there were a handful of attempts at evolving

topologies of networks that were somewhat successful,

however, they identified a series of problems that would need

to be overcome before the technology could actually do

anything incredibly useful. What made NEAT and its paper

so interesting is some of the solutions it proposed to these

problems, solutions that still make this paper relevant today

[1].

3. METHODOLOGY

Two components are required to this work: fitness function

calculation and phenotype settings.

A. Fitness

To compute the fitness of the agent we use distance covered

by the agent and the fitness function is denoted by sigmoid.

Here, x is the horizontal distance.

The domain of sigmoid function is real numbers, with return

(response) value commonly monotonically increasing but

could be decreasing. Sigmoid functions most often show a

response in the range 0 to 1. Another commonly used range

is from −1 to 1 [10] .

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 9

B. Phenotype settings

Earlier, there were a handful of attempts at evolving

topologies of networks that were somewhat successful;

however, they identified a series of problems that would need

to be overcome before the technology could actually do

anything incredibly useful. What made NEAT and its paper

so interesting is some of the solutions it proposed to these

problems, solutions that still make this paper relevant today

[1].

Encoding

We have a genotype and a phenotype in biology. A genotype

is the genetic representation of a creature and the phenotype

is the physical representation of the creature. Evolutionary

algorithms always mirror biology, neuroevolution being no

different in this respect.

The idea of encoding comes from the question of how we

wish to represent individuals' genetics in our algorithm. The

way in which we encode our individuals lays out the path for

how our algorithm will handle the key evolutionary

processes: selection, mutation, and crossover (also known as

recombination). Any encoding will fall into one of two

categories, direct or indirect.

A direct encoding will specify every information about an

individual. If it represents a neural network this means that

each gene will directly be connected to some node,

connection, or property of the network. This can be a binary

encoding of 1s and 0s, a graph encoding (linking various

nodes by weighted connections), or something even more

complex. The point is that there will always be a direct link

between genotype and phenotype that is very obvious and

readable.

An indirect encoding is the exact opposite of direct. Instead

of directly specifying what a structure may look like, indirect

encodings tend to specify protocol or parameters of processes

for creating an individual. That’s why indirect encodings are

much more compact. The other side is that setting the rules

for an indirect encoding can result in a heavy bias within the

search space, therefore, it is much harder to create an indirect

encoding without complete knowledge about how the

encoding will be used.

The NEAT algorithm chooses a direct encoding technique

because of this. Their representation is a little more complex

than a simple graph or binary encoding, however, it is still

understandable. It has two lists of genes, a series of nodes

and a series of connections. To see what this looks like

visually, we used a picture here:

Input and output nodes are not evolved within the node gene

list. Hidden nodes can be added or deleted. As for connection

nodes, they specify where a connection comes into and out

of, the weight of such connection, whether or not the

connection is enabled, and an innovation number (something

we’ll discuss in the next section).

Mutation

In NEAT, mutation can either mutate existing connections or

can add new links to a network. If a new link is added

between a start and end node, it is randomly assigned some

weight [3].

If a new node is added in structure, it will be placed between

two nodes that are already connected. The previous

connection is disabled (though it is still present within the

genome). The previous start node is connected to the new

node with the weight of the old connection and the new node

is connected with the previous end node with a weight of 1.

This was found to assist mitigate issues with new structural

additions.

Competing Conventions

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 10

Another big problem in evolving the topologies of neural

networks is something that the NEAT paper calls “competing

conventions.” The thought is that just blindly crossing over

the genomes of two neural networks could end in networks

that are horribly mutated and non-functional. If two networks

are dependent on central nodes that both get relinked out of

the network, we have an issue

More than that, genomes are often of various sizes. How can

we align genomes that don’t seem to be obviously

compatible? In biology, this is nursed through an idea called

homology. Homology is the alignment of chromosomes

based on matching genes for a specific characteristic. Once

that happens, crossover can happen with much less chance of

error than if chromosomes were blindly mixed together.

NEAT solves this issue through the usage of historical

markings (as shown in figure). By assigning new evolutions

with a historical number, when it comes time to crossover

two individuals, this can be done with much less chance of

making individuals that are non-functional. Each gene can be

aligned and potentially crossed-over. Each time a new node

or new type of connection occurs, a historical marking is

assigned, allowing easy alignment when it comes to breeding

two of our individuals. Shown in fig.

Speciation

A very interesting idea put forth in NEAT was that the

majority of new evolutions aren’t good ones. In fact, adding

a new connection or node before any optimization of weights

has occurred often leads to a lower performing individual.

This will put new structures at a disadvantage. How can we

protect new structures and permit them to optimize before we

remove them from the population entirely? NEAT suggests

speciation.

Speciation simply splits up the population into several

species supporting the similarity of topology and

connections. If the competing convention problem still

existed, this would be very hard to measure. However, since

NEAT uses historical markings in its encoding, this becomes

much easier to calculate. A function for deciding how to

speciate is given within the paper, but the important part to

note is that individuals in a population only have to compete

with other individuals within that species. This allows for

new structures to be created and optimized without fear that

it will be eliminated before it can be truly explored.

More than that, NEAT moves things one step forward

through something called explicit fitness sharing. That means

that individuals share how well they are doing across the

species, boosting up higher performing species, though still

allowing other species to explore their structure optimization

before being out evolved.

Minimal Structure

Major goal of the NEAT paper was to make a framework for

evolving networks that allowed for minimal networks to be

evolved. The authors didn’t want to make an algorithm that

first found good networks and then had to scale back the

number of nodes and connections after the fact. Instead, the

thought was to create an algorithm that started with the

minimal amount of nodes and connections, evolving

complexity as time goes on if and as long as it is found to be

useful and necessary.

NEAT sets up their algorithm to evolve minimal networks by

starting all networks with no hidden nodes. Each individual

within the initial population is simply input nodes, output

nodes, and a series of connection genes connected between

them. By itself, this may not necessarily work, but when

combined with the idea of speciation, this proves to be a

strong idea in evolving minimal, yet high-performing

networks [5] .

4. RESULT

All AI were trained using the pink box as inputs. . For this

we ran several populations on level 1-1 with the same

random seed. The random seed was to possess populations

select, crossover, and mutate an equivalent. There is a

tradeoff between accuracy and speed for training. With more

inputs, Mario could be ready to learn tons more about the

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 11

environment, however, it's going to take significantly longer.

We ran for a number of generations to see which populations

learned faster. We then took the input dimensions of the best

population and restarted all training with those dimensions

that it will be eliminated before it can be truly explored.

More than that, NEAT moves things one step forward

through something called explicit fitness sharing. That means

that individuals share how well they are doing across the

species, boosting up higher performing species, though still

allowing other species to explore their structure optimization

before being out evolved.

Minimal Structure

Major goal of the NEAT paper was to make a framework for

evolving networks that allowed for minimal networks to be

evolved. The authors didn’t want to make an algorithm that

first found good networks and then had to scale back the

number of nodes and connections after the fact. Instead, the

thought was to create an algorithm that started with the

minimal amount of nodes and connections, evolving

complexity as time goes on if and as long as it is found to be

useful and necessary.

NEAT sets up their algorithm to evolve minimal networks by

starting all networks with no hidden nodes. Each individual

within the initial population is simply input nodes, output

nodes, and a series of connection genes connected between

them. By itself, this may not necessarily work, but when

combined with the idea of speciation, this proves to be a

strong idea in evolving minimal, yet high-performing

networks [5] .

5. RESULT

All AI were trained using the pink box as inputs. . For this

we ran several populations on level 1-1 with the same

random seed. The random seed was to possess populations

select, crossover, and mutate an equivalent. There is a

tradeoff between accuracy and speed for training. With more

inputs, Mario could be ready to learn tons more about the

environment, however, it's going to take significantly longer.

We ran for a number of generations to see which populations

learned faster. We then took the input dimensions of the best

population and restarted all training with those dimensions.

It’s extremely precise and many players would never be able

to actually do one. This AI, on the other hand, was able to

figure out how to perform a wall jump and utilize it to get

past a hole. One thing that AI’s are being used to find

exploits and vulnerabilities in systems. The AI has no idea

that it should not be able to do something or that it should. It

simply tries all possible ways to maximize fitness.

Evaluating all of the results together it can be seen that our

methodology turned the game into a problem simple to solve

by the algorithm. Those results show that training agents

using a very restricted training environment can lead to

optimal behaviors.

6. CONCLUSION

In this work, the authors propose a minimal training strategy

to generate agents capable of achieving optimal scores and

passing different levels in the game Super Mario.

This implementation of mar I/O gives better results than a

human after few generations of learning. This shows that this

strategy can find optimal solutions in a short number of

generations but some levels are seems impossible to beat.

That’s all there is to it ,with a few adjustments, this

framework is applicable to any game for the NES, SNES,

SEGA Genesis, and more.

REFERENCES

[1] R. Chuchro, “Game playing with deep q-learning

using openai gym,” Semantic Scholar, 2017.

[2] K. O. Stanley, B. D. Bryant, and R. Miikkulainen,

“Real-time neuroevolution in the NERO video

game,” IEEE Transactions on Evolutionary

Computation, vol. 9, no. 6, pp. 653–668, 2005.

[3] Gomez, F., and Miikkulainen, R. (1998). 2-D pole-

balancing with recurrent evolutionary networks. In

Proceedings of the International Conference on

Artificial Neural Networks, 425–430. Berlin:

Springer.

[4]] R. S. Sutton and A. G. Barto, Introduction to

Reinforcement Learning, 1st ed. Cambridge, MA,

USA: MIT Press, 1998.

[5] M. Ebeling-Rump and Z. Hervieux-Moore,

“Applying q learning to flappy bird,” Semantic

Scholar, 2016.

[6] K. O. Stanley and R. Miikkulainen. Evolving neural

networks through augmenting topologies.

Evolutionary Computation, 10(2):99–127, 2002.

[7] S. Karakovskiy and J. Togelius. The mario ai

benchmark and competitions. Computational

Intelligence and AI in Games, IEEE Transactions

on, 4(1):55–67, 2012.

[8] J. Togelius, S. Karakovskiy, and R. Baumgarten.

The 2009 mario ai competition. In Evolutionary

Computation (CEC), 2010

[9] A. McIntyre, M. Kallada, C. G. Miguel, and C. F. da

Silva,“neat-python,”

https://github.com/CodeReclaimers/neat-python.

[10] D. Whitley. A genetic algorithm tutorial. Statistics

and Computing, 4(2):65–85, 1994.

