
International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 12

MACHINE LEARNING BASED AUTOMATIC STATE SWITCHING

1
Fahad Ansari,

2
Gaurav Kumar Singh,

3
Abhay Kumar,

4
Surendra Singh Chauhan

1,2,3
student(UG),

4
Assistant Professor

Department of Computer Engineering

Galgotias University, Greater Noida, India

Abstract- Self-driving cars have become a trending subject

with a significant improvement in the technologies in the

last decade. The project purpose is to train a neural

network to drive an autonomous car agent on the tracks of

Udacity’s Car Simulator environment. Udacity has released

the simulator as open source software and enthusiasts have

hosted a competition (challenge) to teach a car how to drive

using only camera images and deep learning. Driving a car

in an autonomous manner requires learning to control

steering angle, throttle and brakes. Behavioral cloning

technique is used to mimic human driving behavior in the

training mode on the track. That means a dataset is

generated in the simulator by user driven car in training

mode, and the deep neural network model then drives the

car in autonomous mode. Three architectures are

compared with respect to their performance.

Though the models performed well for the track it was

trained with, the real challenge was to generalize this

behavior on a second track available on the simulator. The

dataset for Track_1, which was simple with favorable road

conditions to drive, was used as the training set to drive the

car autonomously on Track_2 which consists of sharp

turns, barriers, elevations and shadows. To tackle this

problem, image processing and different augmentation

techniques were used, which allowed extracting as much

information and features in the data as possible. Ultimately,

the car was able to run on Track_2 generalizing well. The

project aims at reaching the same accuracy on real time

data in the future.

1. INTRODUCTION

The purpose of a Self-driving car project is to build a better

autonomous driver. The car should be able to drive itself

without falling off the track, with accelerating and braking at

appropriate places. This chapter covers the problem

statement of the project in brief and the higher-level solution

approach used.

1.1 Problem Definition

Udacity released an open source simulator for self-driving

cars to depict a real-time environment. The challenge is to

mimic the driving behavior of a human on the simulator with

the help of a model trained by deep neural networks [1]. The

concept is called Behavioral Cloning, to mimic how a human

drives. The simulator contains two tracks and two modes,

namely, training mode and autonomous mode. The dataset is

generated from the simulator by the user, driving the car in

training mode. This dataset is also known as the “good”

driving data. This is followed by testing on the track, seeing

how the deep learning model performs after being trained by

that user data. Another challenge is to generalize the

performance on different tracks. That means, training the

model using the dataset created on one of the tracks, and

testing it on the other track of the simulator.

1.2 Solution Approach

The high-level architecture of the implementation can be

seen in Figure 13

Fig 1 Implementation Architecture

The problem is solved in the following steps:

The simulator can be used to collect data by driving the car

in the training mode using a joystick or keyboard, providing

the so called “good-driving” behavior input data in form of a

driving_log (.csv file) and a set of images. The simulator acts

as a server and pipes these images and data log to the Python

client.

The client (Python program) is the machine learning model

built using Deep Neural Networks. These models are

developed on Keras (a high-level API over Tensor flow).

Keras provides sequential models to build a linear stack of

network layers. Such models are used in the project to train

over the datasets as the second

step. Detailed description of CNN models experimented and

used can be referred to in the chapter on network

architectures.

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 13

∙ once the model is trained, it provides steering angles and

throttle to drive in an autonomous mode to the server

(simulator).

∙ These modules, or inputs, are piped back to the server and

are used to drive the car autonomously in the simulator and

keep it from falling off the track.

1.3 Technologies Used

Technologies that are used in the implementation of this

project and the motivation behind using these are described

in this section. Tensor Flow: This an open-source library for

dataflow programming. It is widely used for machine

learning applications. It is also used as both a math library

and for large computation. For this project Keras, a high-

level API that uses Tensor Flow as the backend is used.

Keras facilitate in building the models easily as it more user

friendly. Different libraries are available in Python that helps

in machine learning projects. Several of those libraries have

improved the performance of this project. Few of them are

mentioned in this section. First, “Numpy” that provides with

high- level math function collection to support multi-

dimensional metrics and arrays. This is used for faster

computations over the weights (gradients) in neural

networks. Second, “scikit-learn” is a machine learning library

for Python which features different algorithms and Machine

Learning function packages. Another one is OpenCV (Open

Source Computer Vision Library) which is designed for

computational efficiency with focus on real-time

applications. In this project, OpenCV is used for image

preprocessing and augmentation techniques.

The project makes use of MiniConda Environment which is

an open source distribution for Python which simplifies

package management and deployment. It is best for large

scale data processing. The machine on which this project was

built, is a personal computer with following configuration:

∙ Processor: Intel(R) Core i5-7200U @ 2.7GHz

∙ RAM: 8GB

∙ System: 64bit OS, x64 processor

Network Architectures

There were various combinations of architectures tried,

predicting the steering angle and input for the car to drive in

autonomous mode. Neural Network layers were organized in

series and various combinations of Time-Distributed

Convolution layers, MaxPooling, Flatten, Dropout, Dense

and so on are used in architectures. The best performing ones

are shown in detail. Refer to the model listings for the

parameters used to build them. The high-level view of layers

used to build the models is shown in the accompanying

architecture figures.

Model

NVIDIA released architecture for self-driving cars [4] and it

is used in the project for reference to solve the problem and

for comparing with the various other architectures tried.

Different architectures have been standardized over the years

for building sequential models of CNN like AlexNet, VGG-

Net, GoogLeNet, ResNet and so on. Model_2 is architecture

similar to AlexNet, with a slight variation by tweaking

parameters to suit the problem in the project. Refer Figure 17

for overview of the architectures. Model_3 is architecture

similar to VGG-Net, with variations by tweaking parameters

to suit the problem in the project. Refer for overview of the

architectures.

2. PROPOSED METHODOLOGY

In this section, key concepts that are used in the

implementation of this project and the motivation behind

using these concepts are described.

2.1 Convolutional Neural Networks (CNN)

CNN is a type of feed-forward neural network computing

system that can be used to learn from input data. Learning is

accomplished by determining a set of weights or filter values

that allow the network to model the behavior according to the

training data. The desired output and the output generated by

CNN initialized with random weights will be different. This

difference (generated error) is back propagated through the

layers of CNN to adjust the weights of the neurons, which in

turn reduces the error and allows us produce output closer to

the desired one.

CNN is good at capturing hierarchical and spatial data from

images. It utilizes filters that look at regions of an input

image with a defined window size and map it to some output.

It then slides the window by some defined stride to other

regions, covering the whole image. Each convolution filter

layer thus captures the properties of this input image

hierarchically in a series of subsequent layers, capturing the

details like lines in image, then shapes, then whole objects in

later layers. CNN can be a good fit to feed the images of a

dataset and classify them into their respective classes.

2.2 Recurrent Neural Networks (RNN)

RNN are a class of artificial neural networks where

connections between units form a directed cycle. Recurrent

networks, unlike feed forward networks, have the feedback

loop connected to their past decisions, ingesting their own

outputs as input (like a memory). This memory (feedback)

helps to learn sequences and predict subsequent values, thus

being able to solve dependencies over time. For example,

consider the case when the next word in a sentence is

dependent on a previously occurring word or context. RNN

will be an excellent choice for such scenarios. They are

designed to recognize patterns in sequences of data, such as

text, handwriting and so on. They are also applicable to

images that can be separated (decomposed) into a sequence

of patches. Neural networks have activation functions to take

care of the non-linearity and to squash the gradients or

weights in certain range. Some of these functions are

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 14

sigmoid, tanh, RELU and so on that are the building blocks

of RNN. Though these are very powerful, there are some

shortcomings in conventional RNN, such as the well-known

problem of vanishing or exploding gradients. For a detailed

description of this problem, please refer to “the study

conducted by Ujjwalkaran”. Also, training might take a very

long time. To overcome this, new classes of RNN

implementations have been developed recently. Some of

these are below:

2.2.1 LSTM (Long Short-Term Memory)

LSTM is a class of RNN, an improved version that tackles

the vanishing and exploding gradient problems. LSTM block

is made up of a forget gate, input gate and an output gate. A

small demonstration of how these gates work in the LSTM

cell. Each gate that is involved in designing the LSTM cell is

discussed as follows: Forget gate: This decision is made by a

sigmoid activation layer (shown in red) called the “forget

gate layer”.

Input gate: Only the selective input is passed through. The

“input gate layer” decides which values to be passed through.

Next, a tanh layer of activation will help create an update to

the state. (as shown in orange).

Output gate: Selective parts of the cell state are going to

output. Then, the cell state is put through tanh layer (to push

the values to be between −1 and

1) and multiply it by the output of the sigmoid layer

gate. Many remarkable results can be achieved with

LSTM compared to RNN. A lot of people these

days use the LSTM instead of the basic RNN and

they work extremely well on a large variety of

problems.

2.2.2 GRU (Gated Recurrent Unit)

The Gated Recurrent Unit is similar to the LSTM that was

discussed in the “Section.2.2.1”. Gated mechanisms are used,

almost like LSTM and designed to update its memory

content using the update gate that can be compared with the

input gate. The GRU uses a reset gate to reset its memory,

comparable to forget gate of the LSTM.Most research show

the study that the LSTM and GRU outperforms the

traditional RNN unit. However, studies have not found such

big performance differences between the LSTM and GRU.

2.3 Time-Distributed Layers

Another type of layers sometimes used in deep learning

networks is a Time distributed layer. Time-Distributed layers

are provided in Keras as wrapper layers. Every temporal slice

of an input is applied with this wrapper layer. The

requirement for input is that to be at least three-dimensional,

first index can be considered as temporal dimension. These

Time-Distributed can be applied to a dense layer to each of

the time steps, independently or even used with

Convolutional Layers. The way they can be written is also

simple in Keras. There is not much instructional information

out there about the Time Distributed layers, but a discussion

released by Jason Brownlee, “How to use Time Distributed

Layers for LSTM” [6] can serve as a great tutorial for

beginners. I have included the link in the references with this

report.

2.4 RCNN (Combination of CNN and RNN)

The acronym used to denote this combination as RCNN

(Recurrent Convolutional Neural Networks). In recent times,

there have been many implementations using RCNN. There

is another abbreviation for this term (R-CNN) as region-

based CNN which is a popular technique for object detection

in images. In this project, every time this term is used, it will

refer to Recurrent CNNs. Lukas Weist, in a post on Wiki

TUM writes, “It can be assumed that the combination of

RNN with other networks, especially CNN, will be

continued. The improvement and the ability to handle

sequential data enhances the CNN a lot and brings new

unexplored behavior. This is an exciting and promising area

of artificial intelligence” There are several techniques or

methods for which this combination can be realized.

Individually, both CNN and RNN are extremely useful in

image classification (more about spatial characteristics of

data) and sequence prediction (temporal characteristics of

data). The hybrid models can

have a bunch of convolution layers and another branch of

RNN (may include LSTM or GRU or both) in parallel or

they can be stacked in series. In this project, there are

experiments for a variety of architectures. There are results

plotted by different implementations that were tried on the

driving dataset in the chapter on “Results”.

3. UDACITY SIMULATOR AND

DATASET

Udacity has built a simulator for self-driving cars and made it

open source for the enthusiasts, so they can work on

something close to a real-time environment. It is built on

Unity, the video game development platform. The simulator

consists of a configurable resolution and controls setting and

is very user friendly. The graphics and input configurations

can be changed according to user preference and machine

configuration. The user pushes the “Play!” button to enter the

simulator user interface. You can enter the Controls tab to

explore the keyboard controls, quite similar to a racing game.

The first actual screen of the simulator and its components

are discussed below. The simulator involves two tracks. One

of them can be considered as simple and another one as

complex that can be evident. The word “simple” here just

means that it has fewer curvy tracks and is easier to drive.

The “complex” track has steep elevations, sharp turns,

shadowed environment, and is tough to drive on, even by a

user doing it manually. There are two modes for driving the

car in the simulator: (1) Training mode and (2) Autonomous

mode. The training mode gives you the option of recording

your run and capturing the training dataset. The small red

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 15

sign at the top right of the screen in the Figure 9 depicts the

car is being driven in training mode. The autonomous mode

can be used to test the models to see if it can drive on the

track without human intervention. Also, if you try to press

the controls to get the car back on track, it will immediately

notify you that it shifted to manual controls. The mode

screenshot can be as seen in Figure 10. The simulator’s

feature to create your own dataset of images makes it easy to

work on the problem. Some reasons why this feature is useful

are as follows: ∙ The simulator has built the driving features

in such a way that it simulates that there are three cameras on

the car. The three cameras are in the center, right and left on

the front of the car, which captures continuously when we

record in the training mode.

∙ The stream of images is captured, and we can set the

location on the disk for saving the data after pushing the

record button. The image set are labelled in a sophisticated

manner with a prefix of center, left, or right indicating from

which camera the image has been captured.

∙ Along with the image dataset, it also generates a datalog.csv

file. This file contains the image paths with corresponding

steering angle, throttle, brakes, and speed of the car at that

instance.

Column 1, 2, 3: contains paths to the dataset images of

center, right and left respectively

Column 4: contains the steering angle Column value as 0

depicts straight, positive value is right turn and negative

value is left turn.

Column 5: contains the throttle or acceleration at that

instance

Column 6: contains the brakes or deceleration at that instance

Column 7: contains the speed of the vehicle

4. PROPOSED MODEL

This section consists of the configurations used to set up the

models for training the Python Client to provide the Neural

Network outputs that drive the car on the simulator. The

tweaking of parameters and rigorous experiments were tried

to reach the best combination. Though each of the models

had their unique behaviors and differed in their performance

with each tweak, the following combination of configuration

can be considered as the optimal:

• The sequential models built on Keras with deep neural

network layers are used to train the data.

• Models are only trained using the dataset from Track_1.

• 80% of the dataset is used for training, 20% is used for

testing.

• Epochs = 50, i.e. number of iterations or passes through the

complete dataset. Experimented with larger number of

epochs also, but the model tried to “overfit”. In other words,

the model learns the details in the training data too well,

while impacting the performance on new dataset.

• Batch-size = 40, i.e. number of image samples propagated

through the network, like a subset of data as complete dataset

is too big to be passed all at once.

• Learning rate = 0.0001, i.e. how the coefficients of the

weights or gradients change in the network.

• ModelCheckpoint() is the function provided in Keras to

save checkpoints and to save the best epoch according to the

validation loss.

There are different combinations of Convolution layer, Time-

Distributed layer, MaxPooling layer, Flatten, Dropout, dense

and so on, that can be used to implement the Neural Network

models. Out of around ten different architectures I tried, three

of the best ones are discussed in the chapter on network

architectures.

5. CHALLENGES AND ISSUES

In the implementation of the project the deep neural network

layers were used in sequential models. Use of parallel

network of network layers to learn track specific behavior

on separate branches can be a significant improvement

towards the performance of the project. One of the branches

can have CNN layers, the other with the RNN layers and

combining the output with a dense layer at the end. There are

similar problems that are solved using RESNET (Deep

Residual networks), a modular learning framework.

RESNET are deeper than their „plain‟ counterparts (state-of-

art deep neural networks) yet require similar number of

parameters (weights). Implementing Reinforcement Learning

approaches for determining steering angles, throttle and

brake can also be a great way of tackling such problems.

Placing fake cars and obstacles on the tracks, would increase

the level of challenges faced to solve this problem, however,

it will take it much closer to the real-time environment that

the self-driving cars would be facing in the real world. How

well the model performs on real world data could be a good

challenge. The model was tried with the real-world dataset,

but there was no way of testing it on an environment like a

simulator. The big players in the self-driving car industries

must be already trying this on their autonomous vehicles.

This would be a great experiment to see, how this model

really works in the real time environment.

6. RESULT

The machine learning based automatic state switching is a

vehicle that is capable of sensing its environment and

navigating without human input. It can detect environments

using a variety of techniques such as radar, GPS and

computer vision.

7. CONCLUSION

This project started with training the models and tweaking

parameters to get the best performance on the tracks and then

trying to generalize the same performance on different tracks.

The models that performed best on 1 track did poorly on

Track_2, hence there was a need to use image augmentation

and processing to achieve real time generalization.

International Journal For Technological Research In Engineering

Volume 8, Issue 11, July-2021 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2021.All rights reserved. 16

The use of CNN for getting the spatial features and RNN for

the temporal features in the image dataset makes this

combination a great fit for building fast and lesser

computation required neural networks. Substituting recurrent

layers for pooling layers might reduce the loss of information

and would be worth exploring in the future projects.

It is interesting to find the use of combinations of real world

dataset and simulator data to train these models. Then I can

get the true nature of how a model can be trained in the

simulator and generalized to the real world or vice versa.

There are many experimental implementations carried out in

the field of self-driving cars and this project contributes

towards a significant part of it.

Acknowledgement

This is the matter of great privilege for all of us to submit this

project entitled “Machine learning based automatic state

switching” We take pleasure in expressing our deep sense of

gratitude for providing necessary guidance to SURENDRA

SINGH CHAUHAN in the department of Computer Science

& Engineering at GALGOTIAS UNIVERSITY, Greater

Noida for his kind and constant encouragement made it

possible for us to complete this project work. He has given us

pragmatic sense to look into the matter and we are also

highly obliged for his persistence in making the project

complete. It gives us great pleasure to extend our sincere

thanks our colleagues, who helped us directly or indirectly to

complete the project. Last but not the least, we would like to

express our gratitude towards our parents for their kind co-

operation and encouragement which helped us in

completion of this project.

REFERENCES

1. Oliver Cameron, “Challenge #2: Using Deep

Learning to Predict Steering Angles”, Published on

11 Aug 2016, https://medium.com/udacity/challeng

e-2-using-deep learning-to-predict-steering-angles-

f42004a36ff3, accessed Jul 2017

2. Ujjwalkaran,“An intuitive Explanation to

Convolutional Neural networks”,Published on 11

Aug

2016,https://ujjwalkarn.me/2016/08/11/intuitive-

explanation-convnets, accessed Nov 2017

3. Andrej Karpathy, “The unreasonable effectiveness

of Recurrent Neural Networks”, Published on 21

May, 2015, http://karpathy.github.io/2015/05/21/rnn

effectiveness, accessed Nov 2017

4. Mariusz Bojarski, “End-to-End Deep Learning for

Self-Driving Cars”, Published on 17 Aug, 2016,

https://devblogs.nvidia.com/deep-learning-self-

driving-cars/, accessed Nov 2017

5. Jason Brownlee, “How to use Time Distributed

Layers for LSTM”,

https://machinelearningmastery.com/timedistributed

-layer-for-long-short-term memory-networks-in-

python/, accessed Nov 2017

6. Lucas Weist, “Recurrent Neural Networks -

Combination of RNN and CNN”, Published on 7

Feb 2017,

https://wiki.tum.de/display/lfdv/Recurrent+Neural+

Networ ks+Combination+of+R NN+and+CNN,

accessed Nov 2017

7. Dmytro Nasyrov , “Behavioral Cloning.NVidia

NeuralNetwork in Action.” , Published on 21 Aug

2017, https://towardsdatascience.com/behavioral-

cloning-project-3- 6b7163d2e8f9 , accessed Jan

2017

8. Sihan Li , “Demystifying ResNet”, Published on 20

May 2017, https://arxiv.org/abs/1611.01 186,

accessed Jan 2017

9. Franchois Chollet, “Building powerful image

classification models using very little data”,

Published on 5 June 2016,

https://blog.keras.io/building- powerful-image

classification- models-using-very-little- data.html,

accessed Jan 2017

10. Ivan Kazakov, “Vehicle Detection and Tracking”,

Published on 14 May 2017,

https://towardsdatascience.com /vehicle-detection-

and- tracking-44b851d70508, accessed Feb 2017

