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Abstract- Self-driving cars have become a trending subject 

with a significant improvement in the technologies in the 

last decade. The project purpose is to train a neural 

network to drive an autonomous car agent on the tracks of 

Udacity’s Car Simulator environment. Udacity has released 

the simulator as open source software and enthusiasts have 

hosted a competition (challenge) to teach a car how to drive 

using only camera images and deep learning. Driving a car 

in an autonomous manner requires learning to control 

steering angle, throttle and brakes. Behavioral cloning 

technique is used to mimic human driving behavior in the 

training mode on the track. That means a dataset is 

generated in the simulator by user driven car in training 

mode, and the deep neural network model then drives the 

car in autonomous mode. Three architectures are 

compared with respect to their performance. 

 

Though the models performed well for the track it was 

trained with, the real challenge was to generalize this 

behavior on a second track available on the simulator. The 

dataset for Track_1, which was simple with favorable road 

conditions to drive, was used as the training set to drive the 

car autonomously on Track_2 which consists of sharp 

turns, barriers, elevations and shadows. To tackle this 

problem, image processing and different augmentation 

techniques were used, which allowed extracting as much 

information and features in the data as possible. Ultimately, 

the car was able to run on Track_2 generalizing well. The 

project aims at reaching the same accuracy on real time 

data in the future. 

 

1. INTRODUCTION 
 

The purpose of a Self-driving car project is to build a better 

autonomous driver. The car should be able to drive itself 

without falling off the track, with accelerating and braking at 

appropriate places. This chapter covers the problem 

statement of the project in brief and the higher-level solution 

approach used. 

 

1.1 Problem Definition 

 

Udacity released an open source simulator for self-driving 

cars to depict a real-time environment. The challenge is to 

mimic the driving behavior of a human on the simulator with 

the help of a model trained by deep neural networks [1]. The 

concept is called Behavioral Cloning, to mimic how a human 

drives. The simulator contains two tracks and two modes, 

namely, training mode and autonomous mode. The dataset is 

generated from the simulator by the user, driving the car in 

training mode. This dataset is also known as the “good” 

driving data. This is followed by testing on the track, seeing 

how the deep learning model performs after being trained by 

that user data. Another challenge is to generalize the 

performance on different tracks. That means, training the 

model using the dataset created on one of the tracks, and 

testing it on the other track of the simulator. 

 

1.2 Solution Approach 

 

The high-level architecture of the implementation can be 

seen in Figure 13 

 
Fig 1 Implementation Architecture 

 

The problem is solved in the following steps: 

 

The simulator can be used to collect data by driving the car 

in the training mode using a joystick or keyboard, providing 

the so called “good-driving” behavior input data in form of a 

driving_log (.csv file) and a set of images. The simulator acts 

as a server and pipes these images and data log to the Python 

client. 

 

The client (Python program) is the machine learning model 

built using Deep Neural Networks. These models are 

developed on Keras (a high-level API over Tensor flow). 

Keras provides sequential models to build a linear stack of 

network layers. Such models are used in the project to train 

over the datasets as the second 

step. Detailed description of CNN models experimented and 

used can be referred to in the chapter on network 

architectures. 
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∙ once the model is trained, it provides steering angles and 

throttle to drive in an autonomous mode to the server 

(simulator). 

∙ These modules, or inputs, are piped back to the server and 

are used to drive the car autonomously in the simulator and 

keep it from falling off the track. 

 

1.3 Technologies Used 

 

Technologies that are used in the implementation of this 

project and the motivation behind using these are described 

in this section. Tensor Flow: This an open-source library for 

dataflow programming. It is widely used for machine 

learning applications. It is also used as both a math library 

and for large computation. For this project Keras, a high-

level API that uses Tensor Flow as the backend is used. 

Keras facilitate in building the models easily as it more user 

friendly. Different libraries are available in Python that helps 

in machine learning projects. Several of those libraries have 

improved the performance of this project. Few of them are 

mentioned in this section. First, “Numpy” that provides with 

high- level math function collection to support multi-

dimensional metrics and arrays. This is used for faster 

computations over the weights (gradients) in neural 

networks. Second, “scikit-learn” is a machine learning library 

for Python which features different algorithms and Machine 

Learning function packages. Another one is OpenCV (Open 

Source Computer Vision Library) which is designed for 

computational efficiency with focus on real-time 

applications. In this project, OpenCV is used for image 

preprocessing and augmentation techniques. 

 

The project makes use of MiniConda Environment which is 

an open source distribution for Python which simplifies 

package management and deployment. It is best for large 

scale data processing. The machine on which this project was 

built, is a personal computer with following configuration: 

 

∙ Processor: Intel(R) Core i5-7200U @ 2.7GHz 

∙ RAM: 8GB 

∙ System: 64bit OS, x64 processor 

 

Network Architectures 

 

There were various combinations of architectures tried, 

predicting the steering angle and input for the car to drive in 

autonomous mode. Neural Network layers were organized in 

series and various combinations of Time-Distributed 

Convolution layers, MaxPooling, Flatten, Dropout, Dense 

and so on are used in architectures. The best performing ones 

are shown in detail. Refer to the model listings for the 

parameters used to build them. The high-level view of layers 

used to build the models is shown in the accompanying 

architecture figures. 

 

Model 

 

NVIDIA released architecture for self-driving cars [4] and it 

is used in the project for reference to solve the problem and 

for comparing with the various other architectures tried. 

Different architectures have been standardized over the years 

for building sequential models of CNN like AlexNet, VGG-

Net, GoogLeNet, ResNet and so on. Model_2 is architecture 

similar to AlexNet, with a slight variation by tweaking 

parameters to suit the problem in the project. Refer Figure 17 

for overview of the architectures. Model_3 is architecture 

similar to VGG-Net, with variations by tweaking parameters 

to suit the problem in the project. Refer for overview of the 

architectures. 

 

2. PROPOSED METHODOLOGY 
 

In this section, key concepts that are used in the 

implementation of this project and the motivation behind 

using these concepts are described. 

 

2.1 Convolutional Neural Networks (CNN) 

 

CNN is a type of feed-forward neural network computing 

system that can be used to learn from input data. Learning is 

accomplished by determining a set of weights or filter values 

that allow the network to model the behavior according to the 

training data. The desired output and the output generated by 

CNN initialized with random weights will be different. This 

difference (generated error) is back propagated through the 

layers of CNN to adjust the weights of the neurons, which in 

turn reduces the error and allows us produce output closer to 

the desired one. 

 

CNN is good at capturing hierarchical and spatial data from 

images. It utilizes filters that look at regions of an input 

image with a defined window size and map it to some output. 

It then slides the window by some defined stride to other 

regions, covering the whole image. Each convolution filter 

layer thus captures the properties of this input image 

hierarchically in a series of subsequent layers, capturing the 

details like lines in image, then shapes, then whole objects in 

later layers. CNN can be a good fit to feed the images of a 

dataset and classify them into their respective classes. 

 

2.2 Recurrent Neural Networks (RNN) 

 

RNN are a class of artificial neural networks where 

connections between units form a directed cycle. Recurrent 

networks, unlike feed forward networks, have the feedback 

loop connected to their past decisions, ingesting their own 

outputs as input (like a memory). This memory (feedback) 

helps to learn sequences and predict subsequent values, thus 

being able to solve dependencies over time. For example, 

consider the case when the next word in a sentence is 

dependent on a previously occurring word or context. RNN 

will be an excellent choice for such scenarios. They are 

designed to recognize patterns in sequences of data, such as 

text, handwriting and so on. They are also applicable to 

images that can be separated (decomposed) into a sequence 

of patches. Neural networks have activation functions to take 

care of the non-linearity and to squash the gradients or 

weights in certain range. Some of these functions are 
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sigmoid, tanh, RELU and so on that are the building blocks 

of RNN. Though these are very powerful, there are some 

shortcomings in conventional RNN, such as the well-known 

problem of vanishing or exploding gradients. For a detailed 

description of this problem, please refer to “the study 

conducted by Ujjwalkaran”. Also, training might take a very 

long time. To overcome this, new classes of RNN 

implementations have been developed recently. Some of 

these are below: 

 

2.2.1 LSTM (Long Short-Term Memory) 

 

LSTM is a class of RNN, an improved version that tackles 

the vanishing and exploding gradient problems. LSTM block 

is made up of a forget gate, input gate and an output gate. A 

small demonstration of how these gates work in the LSTM 

cell. Each gate that is involved in designing the LSTM cell is 

discussed as follows: Forget gate: This decision is made by a 

sigmoid activation layer (shown in red) called the “forget 

gate layer”. 

 

Input gate: Only the selective input is passed through. The 

“input gate layer” decides which values to be passed through. 

Next, a tanh layer of activation will help create an update to 

the state. (as shown in orange). 

 

Output gate: Selective parts of the cell state are going to 

output. Then, the cell state is put through tanh layer (to push 

the values to be between −1 and 

 

1) and multiply it by the output of the sigmoid layer 

gate. Many remarkable results can be achieved with 

LSTM compared to RNN. A lot of people these 

days use the LSTM instead of the basic RNN and 

they work extremely well on a large variety of 

problems. 

 

2.2.2 GRU (Gated Recurrent Unit) 

 

The Gated Recurrent Unit is similar to the LSTM that was 

discussed in the “Section.2.2.1”. Gated mechanisms are used, 

almost like LSTM and designed to update its memory 

content using the update gate that can be compared with the 

input gate. The GRU uses a reset gate to reset its memory, 

comparable to forget gate of the LSTM.Most research show 

the study that the LSTM and GRU outperforms the 

traditional RNN unit. However, studies have not found such 

big performance differences between the LSTM and GRU. 

 

2.3 Time-Distributed Layers 

 

Another type of layers sometimes used in deep learning 

networks is a Time distributed layer. Time-Distributed layers 

are provided in Keras as wrapper layers. Every temporal slice 

of an input is applied with this wrapper layer. The 

requirement for input is that to be at least three-dimensional, 

first index can be considered as temporal dimension. These 

Time-Distributed can be applied to a dense layer to each of 

the time steps, independently or even used with 

Convolutional Layers. The way they can be written is also 

simple in Keras. There is not much instructional information 

out there about the Time Distributed layers, but a discussion 

released by Jason Brownlee, “How to use Time Distributed 

Layers for LSTM” [6] can serve as a great tutorial for 

beginners. I have included the link in the references with this 

report. 

2.4 RCNN (Combination of CNN and RNN) 

 

The acronym used to denote this combination as RCNN 

(Recurrent Convolutional Neural Networks). In recent times, 

there have been many implementations using RCNN. There 

is another abbreviation for this term (R-CNN) as region-

based CNN which is a popular technique for object detection 

in images. In this project, every time this term is used, it will 

refer to Recurrent CNNs. Lukas Weist, in a post on Wiki 

TUM writes, “It can be assumed that the combination of 

RNN with other networks, especially CNN, will be 

continued. The improvement and the ability to handle 

sequential data enhances the CNN a lot and brings new 

unexplored behavior. This is an exciting and promising area 

of artificial intelligence” There are several techniques or 

methods for which this combination can be realized. 

Individually, both CNN and RNN are extremely useful in 

image classification (more about spatial characteristics of 

data) and sequence prediction (temporal characteristics of 

data). The hybrid models can 

have a bunch of convolution layers and another branch of 

RNN (may include LSTM or GRU or both) in parallel or 

they can be stacked in series. In this project, there are 

experiments for a variety of architectures. There are results 

plotted by different implementations that were tried on the 

driving dataset in the chapter on “Results”. 

 

3. UDACITY SIMULATOR AND 

DATASET 
 

Udacity has built a simulator for self-driving cars and made it 

open source for the enthusiasts, so they can work on 

something close to a real-time environment. It is built on 

Unity, the video game development platform. The simulator 

consists of a configurable resolution and controls setting and 

is very user friendly. The graphics and input configurations 

can be changed according to user preference and machine 

configuration. The user pushes the “Play!” button to enter the 

simulator user interface. You can enter the Controls tab to 

explore the keyboard controls, quite similar to a racing game. 

The first actual screen of the simulator and its components  

are discussed below. The simulator involves two tracks. One 

of them can be considered as simple and another one as 

complex that can be evident. The word “simple” here just 

means that it has fewer curvy tracks and is easier to drive. 

The “complex” track has steep elevations, sharp turns, 

shadowed environment, and is tough to drive on, even by a 

user doing it manually. There are two modes for driving the 

car in the simulator: (1) Training mode and (2)  Autonomous 

mode. The training mode gives you the option of recording 

your run and capturing the training dataset. The small red 
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sign at the top right of the screen in the Figure 9 depicts the 

car is being driven in training mode. The autonomous mode 

can be used to test the models to see if it can drive on the 

track without human intervention. Also, if you try to press 

the controls to get the car back on track, it will immediately 

notify you that it shifted to manual controls. The mode 

screenshot can be as seen in Figure 10. The simulator’s 

feature to create your own dataset of images makes it easy to 

work on the problem. Some reasons why this feature is useful 

are as follows: ∙ The simulator has built the driving features 

in such a way that it simulates that there are three cameras on 

the car. The three cameras are in the center, right and left on 

the front of the car, which captures continuously when we 

record in the training mode. 

 

∙ The stream of images is captured, and we can set the 

location on the disk for saving the data after pushing the 

record button. The image set are labelled in a sophisticated 

manner with a prefix of center, left, or right indicating from 

which camera the image has been captured. 

 

∙ Along with the image dataset, it also generates a datalog.csv 

file. This file contains the image paths with corresponding 

steering angle, throttle, brakes, and speed of the car at that 

instance.  

Column 1, 2, 3: contains paths to the dataset images of 

center, right and left respectively  

Column 4: contains the steering angle Column value as 0 

depicts straight, positive value is right turn and negative 

value is left turn. 

Column 5: contains the throttle or acceleration at that 

instance 

Column 6: contains the brakes or deceleration at that instance 

Column 7: contains the speed of the vehicle 

 

4. PROPOSED MODEL 
 

This section consists of the configurations used to set up the 

models for training the Python Client to provide the Neural 

Network outputs that drive the car on the simulator. The 

tweaking of parameters and rigorous experiments were tried 

to reach the best combination. Though each of the models 

had their unique behaviors and differed in their performance 

with each tweak, the following combination of configuration 

can be considered as the optimal: 

 

• The sequential models built on Keras with deep neural 

network layers are used to train the data. 

• Models are only trained using the dataset from Track_1. 

• 80% of the dataset is used for training, 20% is used for 

testing. 

• Epochs = 50, i.e. number of iterations or passes through the 

complete dataset. Experimented with larger number of 

epochs also, but the model tried to “overfit”. In other words, 

the model learns the details in the training data too well, 

while impacting the performance on new dataset. 

• Batch-size = 40, i.e. number of image samples propagated 

through the network, like a subset of data as complete dataset 

is too big to be passed all at once. 

• Learning rate = 0.0001, i.e. how the coefficients of the 

weights or gradients change in the network. 

• ModelCheckpoint() is the function provided in Keras to 

save checkpoints and to save the best epoch according to the 

validation loss. 

 

There are different combinations of Convolution layer, Time-

Distributed layer, MaxPooling layer, Flatten, Dropout, dense 

and so on, that can be used to implement the Neural Network 

models. Out of around ten different architectures I tried, three 

of the best ones are discussed in the chapter on network 

architectures. 

 

5. CHALLENGES AND ISSUES 
 

In the implementation of the project the deep neural network 

layers were used in sequential models. Use of parallel 

network of network layers to learn track specific behavior 

on separate branches can be a significant improvement 

towards the performance of the project. One of the branches 

can have CNN layers, the other with the RNN layers and 

combining the output with a dense layer at the end. There are 

similar problems that are solved using RESNET (Deep 

Residual networks), a modular learning framework. 

RESNET are deeper than their „plain‟ counterparts (state-of-

art deep neural networks) yet require similar number of 

parameters (weights). Implementing Reinforcement Learning 

approaches for determining steering angles, throttle and 

brake can also be a great way of tackling such problems. 

Placing fake cars and obstacles on the tracks, would increase 

the level of challenges faced to solve this problem, however, 

it will take it much closer to the real-time environment that 

the self-driving cars would be facing in the real world. How 

well the model performs on real world data could be a good 

challenge. The model was tried with the real-world dataset, 

but there was no way of testing it on an environment like a 

simulator. The big players in the self-driving car industries 

must be already trying this on their autonomous vehicles. 

This would be a great experiment to see, how this model 

really works in the real time environment. 

 

6. RESULT 
 

The machine learning based automatic state switching is a 

vehicle that is capable of sensing its environment and 

navigating without human input. It can detect environments 

using a variety of techniques such as radar, GPS and 

computer vision. 

 

7. CONCLUSION 
 

This project started with training the models and tweaking 

parameters to get the best performance on the tracks and then 

trying to generalize the same performance on different tracks. 

The models that performed best on 1 track did poorly on 

Track_2, hence there was a need to use image augmentation 

and processing to achieve real time generalization. 

  



International Journal For Technological Research In Engineering 

Volume 8, Issue 11, July-2021                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2021.All rights reserved.                                                                     16 

The use of CNN for getting the spatial features and RNN for 

the temporal features in the image dataset makes this 

combination a great fit for building fast and lesser 

computation required neural networks. Substituting recurrent 

layers for pooling layers might reduce the loss of information 

and would be worth exploring in the future projects. 

 

It is interesting to find the use of combinations of real world 

dataset and simulator data to train these models. Then I can 

get the true nature of how a model can be trained in the 

simulator and generalized to the real world or vice versa. 

There are many experimental implementations carried out in 

the field of self-driving cars and this project contributes 

towards a significant part of it. 
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