
International Journal For Technological Research In Engineering

Volume 3, Issue 7, March-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1378

OVERVIEW ON FAIR SCHEDULING AND OPTIMAL FAULT

TOLERANCE APPROACHES TO INCREASE THE PERFORMANCE

OF GRID ENVIRONMENT

P.B.Niranjane
1
, D.G. Thakare

2

1
Asst.Prof. Department of CSE, Babasaheb Naik Collge of Engineering, Pusad, (MS)

2
II Year ME Student, Department of CSE, Babasaheb Naik Collge of Engineering, Pusad, (MS)

ABSTRACT: Grid computing is becoming an important

technology in distributed computing. The Fact is focused on

grid computing is Load balancing, Fault tolerance and

recovery from Fault. This paper study the Load balancing

and Fault tolerance. Load balancing is the technique by

which it maintain the workload of sites . This article designs

a Grid Scheduler, which selects the Minimum Loaded Site

for the candidate set of nearest sites, Execute the job within

the Grid. Then the job is dispatched to the Fault Detector

based on the availability of the site. The load balancing

task in the grid environment will significantly improve the

performance of the grid environment. Fault tolerance is a

main technique in grid environment. This technique will

used to execute the job from the processor failure. To

achieve high throughput and resource utilization we

propose a Fair scheduling algorithm and an optimal fault

tolerences that trails for the proposed system are conducted

using Grid Simulation Toolkit (GridSim)

Keywords: Distributed computing; Fault tolerance; Grid

computing; Optimal Fault Tolerences GridSim; Load

balancing; Scheduling

I. INTRODUCTION

An important characteristic of grid computing is resource

sharing. The resources are shared among various

applications. In this scenario load balancing plays an

important role. Grid can offer an efficient load balancing

effect by scheduling the incoming jobs. But the scheduling

process will slow down the system performance and also
cause the system overloaded. Load balancing is an important

technique to maintain the workload in the sites. So there is a

need for a fair scheduling approach. Scheduling is an

important process to optimize the load in the system. The

grid environment needs a proper scheduling and load

balancing algorithms to increase the overall performance of

the system Each site in the grid environment will provide its

hardware information; time and resources available in each

site are recorded for decision making purpose. The grid

scheduler is a manager it will manage the state of sites to

execute jobs. As arriving jobs are placed in the job queue, the

load of the system is increased with increase in the queue
length. While the load in the system is balanced, the grid

scheduler will receive the job from the job queue and

perform the scheduling process. The job queue length is used

as the load indicator. The important concept in fault model is

“Resource reclaiming” which is invoked when the primary

site finished the job before the estimated time. The backup

slot are removed and assigned for the new job which avoids

the backup overloading. There are two types of load

balancing policy in grid environment: Static load balancing

policy and Dynamic load balancing policy. The static load

balancing policy is not well suited to grid environment

because the load may vary with respect to time. Based on the
load at the time it allocates the job to the nodes. Here the

work stations are not constantly monitored. But in dynamic

load balancing policy the workstations are constantly

monitored. The selection of the policy is done at run time

and also uses the current load information for decision

making. It become unavailable without any advance

notifications. In software reliability engineering [2], there are

four main approaches to increase system reliability, which

are fault prevention, fault removal [1], fault tolerance, and

fault forecasting [3]. Since source-codes and internal designs

of Web services are unavailable to service users (usually

developers of the SOA systems), it is difficult to use fault
prevention and fault removal techniques to build fault-free

service-oriented systems. Another approach for building

reliable systems, software fault tolerance [4], makes the

system more robust by masking faults instead of removing

faults. One approach of software fault tolerance, also known

as design diversity, is to employ functionally equivalent yet

independently designed components to tolerate faults .Due to

the cost of developing redundant components, design

diversity is usually only employed for critical systems. In the

area of service computing [5], however, it is possible to

construct a fault-tolerant service-oriented system without
having to pay the cost of developing diverse components.

There are a number of functionally equivalent Web services

already diversely implemented by different organizations on

the Internet. These Web services can be employed as

alternative components for building diversity-based fault-

tolerant service-oriented system. Fault tolerance strategies

can be divided into passive replication strategies and active

replication strategies. Passive strategies [1], [2], [3] employ a

primary service to process the request and invoke another

alternative backup service when the primary service fails,

while Active strategies [3],[4], [5], [6], [7] invoke all

functionally equivalent services in parallel. In this paper,
user requirements are formulated as local constraints and

global constraints. A service-oriented system typically

includes a set of tasks. Suitable Web services need to be

selected to fulfil these tasks. This paper advances the current

state-of-the-art in software fault tolerance for Web services

by proposing a systematic and extensible framework for

International Journal For Technological Research In Engineering

Volume 3, Issue 7, March-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1379

selecting an optimal fault tolerance strategy for reliable

service-oriented systems with local and global constraints.

The main contributions of this paper include: (1) modelling

the problem of selecting the optimal fault tolerance strategy
as a specific optimization problem and designing a heuristic

algorithm to efficiently solve the problem; (2) specifying the

user requirements as local and global constraints, There are

two types of load balancing policy in grid environment:

Static load balancing policy and Dynamic load balancing

policy. The static load balancing policy is not well suited to

grid environment because the load may vary with respect to

time. Based on the load at the time it allocates the job to the

nodes. Here the work stations are not constantly monitored.

But in dynamic load balancing policy the workstations are

constantly monitored. The selection of the policy is done at

run time and also uses the current load information for
decision making. Dynamic Load balancing policy will not

require the priori task information to allocate/reallocate the

resource. Dynamic load balancing algorithm will give better

performance then static load balancing algorithm.

II. RELATED WORK

In grid computing there are various job scheduling algorithm

are used to utilize the resources effectively. This process will

increase the execution performance and balance the system

load. The resources which change over time are contributed

by idle computers in the grid computing environment. This
will happen when new resource join or old resource exit

from the grid environment because grid is an dynamic

environment the resources in the environment will change

over time so designing a job scheduling algorithm to

dynamically change according to the variation in resource

requires considering numerous and complicated factor[1]

In grid the load balancing algorithm will follow three policies

there are Information policy, transfer policy, location policy

and selection policy. The information policy specifies what

workload information to be collected, when it to be collected

and from where it to be collected. The resource monitoring
system will monitor the status of the resource based on the

resource load information the transfer policy will decide

whether the resource have the eligibility to act as a sender or

receiver. Sender means it will transfer the job to the resource.

Receiver means it will receive the job from another resource

[2]. The load balancing mechanism will follow the fair

distribution. It will distribute the load across the nodes in

fairly manner. We mean that the difference between

“heaviest loaded” node and “lightest loaded” node should be

minimized [3]. In Oder to minimize the overhead of

information collection, state information exchange is done by

mutual information feedback. An advantage of mutual
information feedback is that the rate of load dissemination is

directly proportional to the job arrival rate. An increase in job

arrival rate means load information is exchanged more

frequently [4]. In cluster based load balancing algorithms

[6], the computing nodes are partitioned into clusters on the

basis of network transfer delay. In this proposed algorithm,

each cluster and all computing nodes of its cluster are defined

for making load balancing decisions thereby introducing

considerable communication overhead In [5], a

decentralized dynamic load balancing algorithm (ELISA) is

proposed which neglected the overheads involved in

collecting state information for load balancing. In this
approach, the problem of frequent exchange of information

is alleviated by estimating the load, based on system state

information received Jobs will fail when the site where they

are located fails due to hardware faults. The faults can be

transient or permanent and are assumed to be independent.

For each job, the backup is scheduled after its primary. There

exists a fault detection mechanism such as fail-signal and

acceptance test to detect processor and job failures

[6].Resource reclaiming is invoked when the primary

finishes the job before the estimated time; the backup slot is

removed and assigned for the new job. The resource

reclaiming will avoid the backup overloading

III. PRO POSED APPROACH

1] FAIR SCHEDULING APPROACH

2]LOAD BALANCING APPROACH

A. Static Load Balancing

B. Dynamic Load Balancing

C. Fault tolerant

A. FAIR SCHEDULING ALGORITHMS:

i) Component Ranking for ordinary application:

Initialize by randomly assigning a numerical value between 0
and 1 to each component in the component graph. Compute

the significance value for each component. The significance

values can be calculated either iteratively or algebraically.

The iterative method is repeating the computation until all

significance values become stable.

ii) Component Ranking for Hybrid application:

 The components of a hybrid application are divided into two

sets by their nature. One set for the components deployed in

a private data centre, denoted as P, and the other for the

components moved to the cloud, denoted as C. For each

component calculate the significance value. The significance
values can be calculated either iteratively or algebraically.

The iterative method is repeating the computation until all

significance values become stable.

B. Fault tolerance strategy selection algorithm:

First, the aggregated failure rate f, response-time t, and the

resource cost r of each fault tolerance strategy candidate are

calculated by using RB, NVP, Parallel and VM restart. And

the strategies which could not satisfy the response-time

constraints will be removed. Second, list the Top-K

significant components according to the descending order of

their significance value. Third, the strategy with minimum
resource cost will be selected for each of the components as

their initialization strategy to make sure all of them are fault-

tolerant. Then for each component, select the candidate with

the lowest aggregated failure rate as the optimal one. By

repeating the last step until it meets the user resource cost

constraints, the reliability-based design optimization can be

achieved

International Journal For Technological Research In Engineering

Volume 3, Issue 7, March-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1380

IV. SYSTEM DESIGN PROCSS

Reliability optimization framework i.e. OPTIMAL GRID,

includes three phases:

1] Fair scheduling analysis;
2]Optimal Fault Tolerances significance ; and

3] Fault tolerance strategy selection.

Legacy application analysis:

Both structure and failure information are extracted during

the legacy application analysis phase.

The structure information extraction consists of two sub

processes: -

Component extraction:

The structure information includes components and the

invocation information. The components are extracted from

legacy applications by source code and documentation

analysis. The invocation information such as invocation links
and invocation frequencies can be identified from application

trace logs. Source codes and documentations are useful

supplementary materials in addition to trace logs. All the

information are represented in a component graph.

Invocation extraction:

Component failure rate and failure impact collection: The

failure rate and failure impact information can be collected

from the execution logs or test results of legacy applications.

The failure information including failure rate and failure

impact are collected from the execution logs and test results

of the legacy application. Components with a failure rate
higher than the threshold will be re -factored, and their

reliability properties will be updated. A component graph is

built for the legacy application based on the structure as well

as the failure information.

Automated significance ranking:

In the automated significance ranking phase, two algorithms

are proposed for ordinary applications that can be migrated to

public cloud and hybrid applications that need to be migrated

to hybrid cloud, respectively.

Software fault tolerance strategies:

Recovery Block (RB), Optimal and Parallel are three widely

used strategies in software fault tolerance. Since RB strategy

invokes standby components sequentially when the primary
component fails, its response time is the summation of the

execution time of all failed versions and the first successful

one. NVP strategy needs to wait for all n responses from the

parallel invocations to determine the final result, thus its

response time depends on the slowest version. While Parallel

strategy employs the first returned response as the final

result, its response time is the minimum one of all

replications. So it can be concluded that the response time

performance of Optimal is generally worse than that of

Optimal , which in turn is worse than that of the parallel

strategy. Since Optimal and Parallel use parallel component

invocations and all the resources need to be allocated before
the execution, while in RB extra resources will be allocated

only when the primary component fails, the required

resources of Optimal and Parallel are much higher than

those of Optimal . All three strategies can tolerate crash

faults, and Optimal strategy can also mask value faults

The virtual machine restart strategy will not affect resource

allocation but can affect the response time if there is a

failure. Employing a suitable fault tolerance strategy for the

significant components can help achieve optimal resource

allocation while improving application reliability. Each fault

tolerance strategy has a number of variations, thus selecting
an optimal strategy for each significant component is time

consuming. An automatic optimal fault tolerance strategy

selection algorithm is therefore required to reduce the

workload of application designers. Four candidates are

employed for fault tolerance which include recovery block,

N-version programming, parallel, and virtual machine

restart. These strategies can be employed to tolerate crash

and value faults. Other types of fault tolerance mechanisms

can be added to Optimal Grid without fundamental changes.

V. CONCLUSION AND FUTURE WORK
Authors presents a reliability-based design optimization

framework for migrating legacy applications to the Grid

environment. They proposes a component ranking

framework for fault-tolerant Grid applications component

ranking algorithms, the significance value of a component is

determined by the number of components that invoke this

component, the significance values of these components,

how often the current component is invoked by other

components, and the component characteristics. After

finding out the significant components, System proposes an

optimal fault-tolerance strategy selection algorithm to

provide optimal fault-tolerance strategies to the significant
components automatically, based on the user constraints.

The Throughput and Performance of the grid environment

will greatly improve by an optimal load balancing approach.

Here a fair scheduling approach with equal opportunity to all

the jobs is designed. The fair scheduling approach follows

the hybrid scheduling by calculating the residue value for

each job for a number of iterations until the residue gets

down to zero. This approach is linear and iterative in nature

International Journal For Technological Research In Engineering

Volume 3, Issue 7, March-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1381

which eliminates the fluctuations in the response time so

optimally it may possible to improve performance of Grid

environment.

 REFERENCES

[1] Qin X, Jiang H, “A novel fault-tolerant scheduling

algorithm for precedence constrained tasks in real-

time heterogeneous systems”, Journal of Parallel

Computing, 2006;32:331–46.

[2] Grosu D, Chronopoulos , “Non-cooperative load

balancing in distributed systems”, Journal of Parallel

and Distributed Computing 2005;65(9):1022–34.

[3] Penmatsa S, Chronopoulos , “Job allocation

schemes in computational Grids based on cost

optimization” In: Proceedings of 19th IEEE

international parallel and distributed processing
symposium, Denver; 2005.

[4] Alomari R, Somani AK, Manimaran G, “Efficient

overloading techniques for primary-backup

scheduling in realtime systems”, Journal of Parallel

and Distributed Computing, 2004;64:629–48.

[5] Hwang S, Kesselman C, “A flexible framework for

fault tolerance in the Grid”, Journal of Grid

Computing, 2003;1:251–72.

[6] Buyya R, Murshed MM, “Gridsim: a toolkit for the

modeling and simulation of distributed resource

management and scheduling for Grid computing”,
Concurr Comput: Pract Exp 2002;14:1175–220

