
International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1652

POSITION TRACKING SYSTEM TO FIND SHORTEST PATH TO

OBJECT USING ARTIFICIAL INTELLIGENCE & FUZZY LOGIC

FOR GIS SYSTEM

Rekha Sharma
1
, Mr. Devkant Tyagi

2

1
M.Tech (Computer Science),

2
Assistant Professor M.Tech (CS)

Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India

ABSTRACT: To find the shortest distance always suffers

struggle and more complexity rather than simple and easy

path. Here we are finding the position & shortest path to an

object from image taken from camera or any visual sensing

device by making use of fuzzy logic & Artificial

Intelligence. First we take image of the desired area then

take out the desired place where we want to reach as quick

and by proper way. By Artificial Intelligence we can find

the best way out of all possible good ways to reach. Shortest

path not always depends upon the shortest path it may lead

the rush, large number of traffic signals, worst condition of

road which may cause for delay. So we take all into account

to make our modify model for shortest path. Here our

model provides the user with more than one way/path to go

to the destination. Position tracking system is to find the

shortest path by means to save time. Earlier model give the

shortest path on the basis of shortest distance, it does not

include the time factor where our model include the factors

that affect the time to reach the destination earlier than the

previous shortest path. Here, we are making use of AI &

Fuzzy-Logic to track the position to the object & then

finding the shortest path from source to destination.

Shortest path is the best path to reach from source to

destination & it will make use of AI that helps in decision

making power. Proposed algorithm including every factors

that we face in our daily life. It give user more ways to

choose and provide shortest path in term of very less time as

compare to previous model.

Keywords: Shortest Path, A Star Algorithm, Dijkstra

algorithm, Fuzzy logic, Artificial Intelligent (AI)

I. INTRODUCTION

Motor vehicles, as a kind of modern transport means, with

the advantages of high speed and convenience, are important

to people‟s daily travel. Activities like going out, travelling to

work, shopping, and visiting friends and relatives are often

done by using motor vehicles. With the development of

economics and technology, the number of motor vehicles has

increased rapidly in the past decades. Davis in 2012 showed

that from 1990 to 2009 in selected countries, the average

annual percentage change of the number of cars is 2.3%, for
trucks and buses the average annual percentage change is

3.9%, and the growth is still proceeding. Availability of more

vehicles makes it more convenient for people to travel and

merchandise transport. The increase of the number of

vehicles also brings stresses to public traffic and pollution to

the environment.

Traffic congestion almost happens all over the world in

every day, especially in big cities. The reasons which cause

traffic congestion are various, like traffic accident and

atrocious weather (for example, heavy rains and snows). In

many countries, the government and the institute of

environmental protection advocate people to take public
transport means, like bus and metro, instead of personal cars

to reduce the number of motor vehicles on the road. Besides

this, there are other solutions for traffic problems in different

countries, like widening the streets, rebuilding the existing

roads, building more new roads, and enlarging the area of

city. Properly priced on-street parking can greatly reduce

traffic congestion.

Figure 1: Worst traffic jams from around the world

The researches about how to solve traffic problems can

somehow make traffic flow more efficient, but one of the

presumable results of following these measures is to affect

the utilization of motor vehicles or increase the cost of using

motor vehicles. Although traffic congestion brings several

problems to people‟s daily life and hinders people‟s travel, to

a lot of people, it is still necessary and important to travel by
taking motor vehicles. In this condition, we try to provide

other solutions to the traffic problems, by providing a

shortest-time route plan to make the traffic flow more time-

efficient. By taking the shortest-time path, it will increase

traffic control and management, make the motor vehicles

running more rapidly and efficiently.

1.1 The Shortest-Time Path

In general, the shortest-time path, as the name implies, is the

path which costs the shortest time of all possible paths from

one place to another. In order to figure out such path, the

time cost of each path should be able to be measured or
calculated. However, in reality, the time cost of a journey not

only depends on the fixed length of the roads which the

driver chooses, but also depends on the complex traffic

condition and the variable driving speed, so in reality, the

shortest path is probably not the shortest-time path.

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1653

The hinder factors of traffic are various, like the amount of

vehicles, the number of pedestrians, weather condition and

the road condition (width, pavement condition, gradient and

visibility). The driving speed is also impacted by many
factors, such as vehicle type, driver‟s choice, traffic

condition, weather and so on. Although there are methods to

calculate the driving speed, like it is studied by Zhao (2010),

but in reality, it is impossible to measure the speed of all

vehicles on the roads, therefore, the time cost of motor

vehicles‟ travel is impossible to estimate without measuring

it individually. By taking advantages of mobile GNSS and

web GIS as background knowledge and technology, and

using open source data and tools, the purpose of our study is

to combine web GIS and mobile phone with GPS module

(which also must be able to connect to internet), to design

and develop a web-based application which can provide
intelligent vehicle navigation service as in Figure 2.

Figure 2: Mobile-based navigation web application

1.2 Dijkstra's Algorithm

A common example of a graph-based pathfinding algorithm
is Dijkstra's algorithm. This algorithm begins with a start

node and an "open set" of candidate nodes. At each step, the

node in the open set with the lowest distance from the start is

examined. The node is marked "closed", and all nodes

adjacent to it are added to the open set if they have not

already been examined. This process repeats until a path to

the destination has been found. Since the lowest distance

nodes are examined first, the first time the destination is

found, the path to it will be the shortest path.

Dijkstra's algorithm fails if there is a negative edge weight. In

the hypothetical situation where Nodes A, B, and C form a

connected undirected graph with edges AB = 3, AC = 4, and
BC = −2, the optimal path from A to C costs 1, and the

optimal path from A to B costs 2. Dijkstra's Algorithm

starting from A will first examine B, as that is the closest. It

will assign a cost of 3 to it, and mark it closed, meaning that

its cost will never be reevaluated. Therefore, Dijkstra's

cannot evaluate negative edge weights. However, since for

many practical purposes there will never be a negative edge

weight, Dijkstra's algorithm is largely suitable for the purpose

of path finding.

1.3 A* Algorithm
A* is a variant of Dijkstra's algorithm commonly used in

games. A* assigns a weight to each open node equal to the

weight of the edge to that node plus the approximate distance

between that node and the finish. This approximate distance

is found by the heuristic, and represents a minimum possible

distance between that node and the end. This allows it to

eliminate longer paths once an initial path is found. If there is

a path of length x between the start and finish, and the

minimum distance between a node and the finish is greater

than x, that node need not be examined.
A* uses this heuristic to improve on the behavior relative to

Dijkstra's algorithm. When the heuristic evaluates to zero,

A* is equivalent to Dijkstra's algorithm. As the heuristic

estimate increases and gets closer to the true distance, A*

continues to find optimal paths, but runs faster (by virtue of

examining fewer nodes). When the value of the heuristic is

exactly the true distance, A* examines the fewest nodes.

(However, it is generally impractical to write a heuristic

function that always computes the true distance.) As the

value of the heuristic increases, A* examines fewer nodes

but no longer guarantees an optimal path. In many

applications (such as video games) this is acceptable and
even desirable, in order to keep the algorithm running

quickly.

1.4 SHORTEST PATH BY A* ALGORITHM

A* is a computer algorithm that is widely used

inpathfinding and graph traversal, the process of plotting an

efficiently traversable path between multiple points, called

nodes. Noted for its performance and accuracy, it enjoys

widespread use. However, in practical travel-routing

systems, it is generally outperformed by algorithms which

can pre-process the graph to attain better
performance,[1] although other work has found A* to be

superior to other approaches.

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford

Research Institute (now SRI International) first described the

algorithm in 1968. It is an extension of EdgerDijkstra's 1959

algorithm. A* achieves better time performance by

using heuristics.

A* uses a best-first search and finds a least-cost

II. LITERATURE SURVEY

Mobile robots are more efficient than legged or treaded
robots on hard as well as smooth surfaces, and have potential

enough to find widespread application in industry, because

of the hard, smooth plant floors in existing industrial

environments [1]. Several configurations for mobility can be

found in the applications as mentioned by Jones et al. [2].

The most common form single-body robots are the

differential drive and synchronic drive tricycle or car-like

drive, and omnidirectional steering robots [3]. Besides the

relevance in applications, the problem of autonomous motion

planning and control of mobile robot has attracted the

interest of many researchers to view its theoretical challenges

[4]. The motion control of wheeled mobile robots has been
able to draw considerable attention over the past few years.

The nonholonomic behaviour in robotic systems is

particularly interesting; since it points out that the

mechanism can be completely controlled by using a reduced

number of actuators. Particularly, these systems are typical

examples of nonholonomic mechanisms due to the perfect

application of the rolling constraints on the wheel motion [5].

Several controllers have been proposed for the motion

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/A*
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Computer_algorithm
http://en.wikipedia.org/wiki/Pathfinding
http://en.wikipedia.org/wiki/Graph_traversal
http://en.wikipedia.org/wiki/Computer_performance
http://en.wikipedia.org/wiki/A*_search_algorithm#cite_note-1
http://en.wikipedia.org/wiki/Peter_E._Hart
http://en.wikipedia.org/wiki/Nils_Nilsson_(researcher)
http://en.wikipedia.org/wiki/Bertram_Raphael
http://en.wikipedia.org/wiki/SRI_International
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Best-first_search

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1654

control of mobile robots with nonholonomic constraints,

where the two main approaches to controlling mobile robots

are posture stabilization and trajectory tracking. The

procedure of modelling can be inspired by definition of a
wheeled mobile robot according to Muri and Neuman [6] as

this, “A robot capable of locomotion on a surface solely

through the actuation of wheel assemblies mounted on the

robot and in contact with the surface. A wheel assembly is a

device that provides a relative motion between its mount and

a surface on which it is intended to have a single point of

contact.” However it is required that the vehicle kinematic

design has the appropriate degrees of freedom (mobility) so

that it can adapt to the variations in the surface and the

wheels roll without slip. Mobility is enhanced by the use of

omni directional wheels instead of conventional wheels [7].

The necessity of ideal rolling without sideways slipping for
wheels enforces non-holonomic (nonintegrable)constraints

on the motion of the wheels of mobile robot [8]. The relation

betweenthe rigid body motion of the robot and the steering

and drive rates of wheels has been developed by Alexander

and Maddocks [9] based on constraint as “rolling without

sliding”. Slippage due to misalignment of the wheels is

investigated here by minimization of a nonsmooth convex

dissipation functional that is derived from Coulomb's Law of

friction. This minimization principle is equivalent to the

construction of quasi-static motions. Three related but

different kinematical aspects have to be considered when
designing a robot. They can be listed as mobility, control and

positioning [10, 11]. The first one, mobility, dealswith the

possible motions that the robot can follow in order to reach

its final destination in any orientation. The second aspect,

control, relates to the choice of the kinematical variables:

generalized velocities or coordinates. Finally, the third

aspect, positioning, considers the localization system that is

used to estimate the actual position and orientation of the

robot by reducing the robot‟s region of uncertainty based on

sensor measurements necessary to achieve an autonomous

operation [12]. The motion along the configuration space is
limited using the kinematic constraints. Kinematic limitations

can be applied at any speed, while dynamic constraints are

important to apply as an agent operates at higher speeds.

Robot design has to tackle agent dynamics issues, as even a

holonomic robot without any kinematic constraints will have

to face some form of dynamics limitations, and in particular

bounds on acceleration and velocity.

Dynamics constraints limit the acceptable values for

derivatives of an agent‟s position over Time

Moon et al. [13] have proved that a wheeled mobile robot is

not able to move along a straight-line exactly, even if the

kinematic problems are corrected perfectly, and this
phenomenon is related to acceleration constraints on motor

controllers. Kinematic model of a parallel wheeled mobile

robot fails to meet Brockett„s necessary condition for

feedback stabilization thereby implying that no smooth or

continuous time invariant. Stabilization and control of

nonholonomic systems with dynamic equations have been

considered in [14] whereas backstepping based methods are

presented in several papers [15, 16, 17].

Internal error occurs from unsuitable setting up of the

parameters and the time constant. External error inescapably

appears when a WMR is being driven and it occurs by virtue

of the two driving wheel‟s different friction and radius. In
order to minimize such errors, Chunget al. [18] has proposed

a feedback controller having two separated feedback loops;

one of which is a position feedback, and the other an

orientation feedback. Based on back stepping algorithm, a

robust adaptive controller has been proposed in [19, 20]to

design an auxiliary wheel velocity controller in order to

make the tracking error as small as possible as compared to

the uncertainties in the kinematics of the robot and fuzzy

logictechniques employed to learn the behaviours of the

unknown dynamics of the robot and the wheel actuators. The

major advantage of this method is that previous knowledge

of the robot kinematics and the dynamics of the robot and
wheel actuators is unnecessary. The parameters

characterizing the robot dynamics are to be updated online,

thereby providing smaller errors and better performance in

applications in which these parameters can vary, such as

loadtransportation. The stability of the whole system is

analyzed using Lyapunov theory, and thecontrol errors are

ultimately bounded [21]. Deng et al. [22] designed a

combined feedback control scheme based on Lyapunov

function candidate [23] has been discussed for four obstacle

cases in dynamic environments considering local minima

problem. The controller includes virtual attractive force,
repulsive force and detouring force, whereas the potential

field function used for the design of the controller considers

the Euclidean distance information and the magnitude

information of the relative velocity between the robot and the

target [24]. A dynamic model of a two-wheeled mobile robot

has been derived in [25, 26] which shows that the

translational motion and the rotational motion with 3 degrees

of freedom of the body and here, the dynamic model is

reduced to the kinematic model under certain assumptions.

Arvin et al. [27] have presented mobile robots motion control

technique based on pulse-width modulation (PWM). The
wheels of mobile robot have been modelled as a torus by

Chakraborty and Ghosal [28]and used as a passive joint

thereby enforcing a lateral degree of freedom so as to get a

slipfree motion in an uneven terrain without using variable

length axle (VLA) as it has several limitations in application.

Zhang et al. [29] have developed a feedback control law [30,

31],allowing a 2-wheel differentially driven mobile robot to

track a prescribed trajectory by usingthe integral back

stepping method and Lyapunov function for ensuring a

trajectory tracking controller with global asymptotic

stability.

Zohar et al. [32] recently proposes control schemes for
trajectory tracking of mobile robot model which includes

kinematic and dynamic effects on motion by using the notion

of virtual vehicle [33] and the concept of flatness [34], and

applying the back stepping [35]methodology. Gandhi and

Ghorbel [36] have proposed the harmonic drive system for

non-linear controller to compensate for kinematic error in the

presence of flexibility in high-speed regulation and trajectory

tracking application. Pathak et al. [37] have discussed the

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1655

behaviour of space robots with torque and attitude controller.

A single curvature trajectory, having a constant and large

rotation radius, has been proposed by Han et al. [38] as an

optimal trajectory, in order to minimize the tracking error of
the differential drive mobile robot while capturing a moving

object along with the pre-determined initial and final states.

A receding horizon controller may be used for tracking

control of wheeled mobile robots subject to nonholonomic

constraint in the environments without obstacles. The control

policy is derived from the optimization of a quadratic cost

function, which penalizes the tracking error and control

variables in each sampling time [39, 40].

III. EARLIER WORKS

3.1 Navigation Using Fuzzy Logic Controller for Mobile

Robot
Fuzzy Logic technique plays an important role in the

designing of an intelligent controller for mobile robot. This

technique is used for navigation of mobile robots. Fuzzy set

theory provides a mathematical framework for representing

and treating uncertainty in the sense of vagueness,

imprecision, lack of information and partial truth. Fuzzy

control systems employ a mode of approximate reasoning

that resembles the decision-making process of humans.

3.2 FUZZY DECISIONS AND CONTROL ALGORITHM

DESIGN
The robot operates in a 2 ×2.4 m2 arena (viewed entirely by

the web cam) with moving obstacles and a target to be

reached. The positions of the target and of the obstacles are

not known in advance; therefore the navigation algorithm has

to implement a reactive paradigm relying only on sensory

information. At first, two simple behaviors, namely reach the

target and avoid obstacles, are carried out with two different

fuzzy controllers, hereinafter called FLC1 and FLC2

respectively. The reach the target behavior as well as avoid

obstacles behavior depends on artificial vision information

and is the primary task for the mobile robot It has the highest
priority and takes place only if an obstacle appears on the

robot path. Subsequently, a fuzzy supervisor takes charge to

combine the reference wheel speeds calculated by each FLC

following a priority code. The final commanded speeds are

sent to the built in speed control loop of the robot. These

controllers are sufficient to guarantee satisfactory navigation

performances for the mobile robot in most of the navigation

tasks. The explore the environment behavior makes the

mobile robot mark regions already visited and look for

unexplored areas. The mobile robot is endowed with a type

of spatial local memory, which is used by a further fuzzy

controller, henceforth called FLC3, to localize and avoid the
box canyons. The structure of the whole control scheme is

shown in Fig.4. The modular architecture of our controller

has the following main advantages with respect to a

monolithic solution: 1. Debugging and tuning operations are

faster and easier since each behavior is described by few

rules and inputs; 2. The final structure is more flexible as

new simple behaviors can easily be added in order to expand

mobile robot skill Reach the target This behavior reacts to the

stimuli of the vision system, providing information about the

relative position between mobile robot and target. The

behavior ignores the presence and position of obstacles. The

robot is equipped with two different diameter circles of same
color on top for position and orientation detection, and the

target is marked with a red ball. In this behavior, the robot

firstly turns until it is aligned to the target, and then moves in

a straight line. The information on the distance (DIST)

between robot and target, and the alignment error (DIR) of

the robot is provided by the vision system passed as inputs to

FLC1.

Fig.2- Behavior based control scheme

Obstacle Avoidance The distance between the robot and the

target causes the robot seeking towards the target when the

robot is very close to the target. Similarly when the robot is

very close to an obstacle, because of it the robot must change
its speed and heading angle to avoid the obstacle. Some of

the fuzzy rules used for obstacle avoidance by robots are

listed in Table 6.1 to Table 6.5. All the rules in those tables

have been obtained heuristically using common sense. Some

rules mentioned in Table 1 cater for extreme conditions

when the obstacles have to be avoided as quickly as possible.

This is for three-membership function. Rule 06 mentioned in

the Table 1 describes if the left obstacle distance is “near”,

right obstacle distance is “far”, front obstacle distance is

“medium” and no unobstructed target is around the robot,

then the robot should turn to right side as soon as possible to
avoid collision with the left obstacle. For the above condition

the left wheel velocity should increase fast and right wheel

velocity should decrease slowly. Similarly some rules

mentioned in Table 6.2 are used for extreme conditions when

the obstacles have to be avoided as soon as possible. These

rules are for five-membership function. For example in rule

12, the left obstacle distance is “ very far”, right obstacle

distance is “near”, front obstacle distance is “ very near” and

no target is located around the robot, then the robot should

turn to left side to avoid collision with the obstacle in front

and towards right of it. For the above condition the right
wheel velocity should increase very fast and left wheel

velocity should decrease very slowly.

IV. PROPOSED WORK

To find the shortest distance always suffers struggle and

more complexity rather than simple andeasy path. Here we

are finding the position & shortest path to an object from

image taken from camera or any visual sensing device by

making use of fuzzy logic & Artificial Intelligence[8].

Firstwe take image of the desired area then take out the

desired place where we want to reach as quickand by proper

way [6]. By Artificial Intelligence we can find the best way

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1656

out of all possible good ways to reach. Shortest path not

always depends upon the shortest path it may lead the rush,

large number of traffic signals, worst condition of road which

may cause for delay [7]. So we take all into account to make
our modify model for shortest path. Here our model provides

the user with more than one way/path to go to the destination.

4.1 REAL TIME INFORMATION MODEL FOR SHORTEST

PATH

Real Time information model with grid algorithm is the

proposed Algorithm for shortest path problem. In this

algorithm, we provide real time information to shortest path

algorithm. In this we include various factors like jamming,

damage of roads, no. of traffic signals, rush which affects the

shortest path in time domain

4.2 A* Algorithm for Real time system

Construct grid, where a * = obstacle and you can move up,

down, left and right, and you start from S and must go to D,

and 0 = free position:
S 0 0 0

* * 0 *

* 0 0 *

0 0 * *

* 0 0 D

You put S in your queue, then "expand" it:
S 1 0 0

* * 0 *

* 0 0 *

0 0 * *

* 0 0 D

Then expand all of its neighbours:
S 1 2 0

* * 0 *

* 0 0 *

0 0 * *

* 0 0 D

And all of those neighbours'neighbours:
S 1 2 3

* * 3 *

* 0 0 *

0 0 * *

* 0 0 D

And so on, in the end you'll get:
S 1 2 3

* * 3 *

* 5 4 *

7 6 * *

* 7 8 9

So the distance from S to D is 9. The running time is O(NM),

where N = number of lines and M = number of columns. I

think this is the easiest algorithm to implement on grids, and
it's also very efficient in practice. It should be faster than a

classical dijkstra. The following program calculates the

minimum point of a multi-variable function using the grid

search method. This method performs a multi-dimensional

grid search. The grid is defined by a multiple dimensions.

Each dimension has a range of values. Each range is divided

into a set of equal-value intervals. The multi-dimensional

grid has a centroid which locates the optimum point. The

search involves multiple passes. In each pass, the method

local a node (point of intersection) with the least function
value. This node becomes the new centroid and builds a

smaller grid around it. Successive passes end up shrinking

the multidimensional grid around the optimum.

The function Grid_Search has the following input

parameters:

N - number of variables

XLo - array of lower values

XHi - array of higher values

NumDiv - array of number of divisions for each range

MinDeltaX - array of minimum ranges

Eps_Fx - tolerance for difference in successive function
values

MaxIter - maximum number of iterations

myFx - name of the optimized function

The function generates the following output:

X - array of optimized variables

BestF - Function value at optimum

Iters - number of iterations

Here is a sample session to find the optimum for the

following function:

y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2

The above function resides in file fx1.m. The search for the
optimum 2 variables has the search range of [-10 -10] and

[10 10] with a divisions vector of [4 5] and a minimum range

vector of [1e-5 1e-5].

The search employs a maximum of 10000 iterations and a

function tolerance of 1e->>

[XBest,BestF,Iters]=Grid_Search(2, [-10 -10], [10 10], [4 4],

[1e-5 1e-5], 1e-7, 10000, 'fx1')

XBest =2.0001 -5.0000

BestF =10.0000

Iters =200
Notice how close the located optimum is to the actual one [-2

5].

Here is the MATLAB listing:

Function y=fx1(X, N)

y = 10 + (X(1) - 2)^2 + (X(2) + 5)^2;

end

function [XBest,BestF,Iters]=Grid_Search(N, XLo, XHi,

NumDiv, MinDeltaX, Eps_Fx, MaxIter, myFx)

% Function performs multivariate optimization using the

% grid search.

% Input

% N - number of variables
% XLo - array of lower values

% XHi - array of higher values

% NumDiv - array of number of divisions along each

dimension

% MinDeltaX - array of minimum search values for each

variable

% Eps_Fx - tolerance for difference in successive function

values

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1657

% MaxIter - maximum number of iterations

% myFx - name of the optimized function

% Output

% XBest - array of optimized variables
% BestF - function value at optimum

% Iters - number of iterations

Xcenter = (XHi + XLo) / 2;

XBest = Xcenter;

DeltaX = (XHi - XLo) ./ NumDiv;

BestF = feval(myFx, XBest, N);;

ifBestF>= 0

LastBestF = BestF + 100;

else

LastBestF = 100 - BestF;

end

X = XLo; % initial search value
Iters = 0;

bGoOn = 1;

while (bGoOn> 0) && (abs(BestF - LastBestF) >Eps_Fx)

&& (Iters<= MaxIter)

bGoOn2 = 1;

while bGoOn2 > 0

Iters = Iters + 1;

F = feval(myFx, X, N);

if F <BestF

LastBestF = BestF;

BestF = F;
XBest = X;

End

The next For loop implements a programming trick that

simulated nested loops using just one For loopsearch next

grid node

for i = 1:N

if X(i) >= XHi(i)

if i < N

X(i) = XLo(i);
else

 bGoOn2 = 0;

break

end

else

X(i) = X(i) + DeltaX(i);

break

end

end

end

while bGoOn2 > 0

XCenter = XBest;

DeltaX = DeltaX ./NumDiv;

XLo = XCenter - DeltaX .* NumDiv / 2;

XHi = XCenter + DeltaX .* NumDiv / 2;

 X = XLo; % set initial X

bGoOn = 0;

for i=1:N

ifDeltaX(i) >MinDeltaX(i)

bGoOn = 1;

end
end

end

whilebGoOn> 0 && () && ()

4.3 MATHEMATICAL ANALYSIS OF PROPOSED

ALGORITHM

Integrate the real time model to the Grid algorithm

Inputs: Size of the Grid (N); No. of Paths: Z; Source and

Destination Coordinates of each of the individual Z paths

Given: Each path comprises of the cells which are

ADJACENT to each other and NOT diagonal. Time taken to

cross each cell is EQUAL and is an unit time.
Output: Z no. of paths which are SHORTEST possible

without clash.

Z(t) is time domain for AI

Ź(t) = Mean(z) ;

Ź(t+δt)= Ź(t)+R-1(Z)*▼z* z(t+ δt)

4.4 HOW SHORTEST PATH CALCULATION PROCESSED

BY REAL TIME INFORMATION MODEL

 Shortest path is being calculated by Grid Algorithm.

 It also give the position of origin and destination.

 After that we include the factors that affects the
shortest path.

 We get the shortest path in real time information

model that is more suitable for user.

V. RESULT WITH SIMULATION

Fig 5.1. Plot Grid

Fig5.2.: Select destination

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1658

Fig 5.3: Select obstacles

Fig5.4:Selected obstacles for Damaged of Road

Fig 5.5: Select source (initial position) of Damaged of road

Fig 5.6: Shortest path Covered

Fig5.7: jamming and Signals

Fig5.8: Include all real time

Fig 5.9 Goal distance incude all real time factors

Fig 5.10: All real time factors

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1659

5.2 SIMULATION WORK FOR SHORTEST PATH

Conclusion

 The use of real time information give us more

dynamic model to find the shortest path.

 This real information makes it a best model for

future.

 This enhancement brings us more closer to real time

situations & save time for travelers.

5.3. Future work

In our study, all the hinder factors are fixed constructions, we

provide the path with less hinders to the traffic and driving

speed. The method may serve as a reference while doing

urban planning. Careful planning of building roads close to

those constructions (schools, hospitals, traffic lights and
residential areas) will diminish the risk of traffic congestion.

To the researchers and students of Geo-science and computer

science, the method to implement the function of our

application can be a reference when they do similar work and

study. Besides this, as utilizing various techniques and tools

in the application, like GIS, traffic analysis, web

development and so on, our application will be useful to

people who are interested in these techniques or tools. The

application works according to the description, but there are

problems that should be solved in the further study. The

algorithm needs to be improved in order to speed up the long

response time. In the future, we hope we can maintain the
application project regularly and improve the method, to

make our study be usable to the public. All the tests were

made in the simulated environment. The interface was only

tested under laptops, iPhone and iPad, and the compatibility

with other mobile systems was not tested.We get the

following conclusion from the tests shown in the result part:

both the number of hinder factors and the weight of each

hinder will affect the result of the shortest-time path.

Although the hinder factors in our study show how they

impact the travel of motor vehicles, and we provide a

shortest-time path from one place to another, the real traffic
is more complex than what we analyzed in our research.

Besides the factors we discussed in our study, some other

factors are also significant to the traffic and driving speed,

but difficult to be implemented in the application. For

example, the numbers of vehicles and pedestrians. Road

traffic congestion in reality is the result of dynamic behavior

of and interactions between many road users

(Verhoef&Rouwendal, 2004). Actually, it is impossible to

count exactly how many people and vehicles are on the

roads, it is hard to collect the dynamic data, and it is difficult

to put it as a factor into calculation, because the value is

changing as time goes by. Weather condition is another
important hinder factor to traffic, but the impact is hard to

estimate before it happens. In reality, it is impossible to find

out the real shortest-time path, we just introducing a new

method to find the possible time efficient path according to

factor considerations. If there are sufficient spatial data and

statistics data, the researchers can choose more proper hinder

factors and weight the factor in a more precise way, to make

the result more reasonable.

 REFERENCES

[1] Dudgeon, D.E. and R.M. Mersereau,

Multidimensional Digital Signal Processing. 1984,

Englewood Cliffs, New Jersey: Prentice-Hall.
[2] Castleman, K.R., Digital Image Processing. Second

ed. 1996, Englewood Cliffs, New Jersey: Prentice-

Hall.

[3] Oppenheim, A.V., A.S. Willsky, and I.T. Young,

Systems and Signals. 1983, Englewood Cliffs, New

Jersey: Prentice-Hall.

[4] Papoulis, A., Systems and Transforms with

Applications in Optics. 1968, New York: McGraw-

Hill.

[5] Russ, J.C., The Image Processing Handbook.

Second ed. 1995, Boca Raton, Florida: CRC Press.

[6] Giardina, C.R. and E.R. Dougherty, Morphological
Methods in Image and Signal Processing. 1988,

Englewood Cliffs, New Jersey: Prentice–Hall. 321.

[7] Gonzalez, R.C. and R.E. Woods, Digital Image

Processing. 1992, Reading, Massachusetts:

Addison-Wesley. 716.

[8] Goodman, J.W., Introduction to Fourier Optics.

McGraw-Hill Physical and Quantum Electronics

Series. 1968, New York: McGraw-Hill. 287.

[9] Heijmans, H.J.A.M., Morphological Image

Operators. Advances in Electronics and Electron

Physics. 1994, Boston: Academic Press.
[10] Hunt, R.W.G., The Reproduction of Colour in

Photography, Printing & Television,. Fourth ed.

1987, Tolworth, England: Fountain Press.

[11] Freeman, H., Boundary encoding and processing, in

Picture Processing and Psychopictorics, B.S. Lipkin

and A. Rosenfeld, Editors. 1970, Academic Press:

New York. p. 241-266.

[12] Stockham, T.G., Image Processing in the Context of

a Visual Model. Proc.IEEE, 1972. 60: p. 828 - 842.

[13] Murch, G.M., Visual and Auditory Perception.

1973, New York: Bobbs-Merrill Company, Inc.
403.

[14] Frisby, J.P., Seeing: Illusion, Brain and Mind. 1980,

Oxford, England: Oxford University Press. 160.

