
International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1820

CLUSTERING BASED ON DBSCAN

Ms. Samata.S.Huddar
1
, Mr. Pramod

2
, Mr. B R Prasad Babu

3

1
M Tech Research Scholar,

2
Associate Professor,

3
Professor and Head

CSE Dept, East Point College of Engineering and Technology, Bangalore, INDIA.

Abstract: DBSCAN is a density based clustering algorithm

extracting the arbitrary shapes of the normal lanes from

AIS data. This paper presents a parallel DBSCAN

algorithm on top of Hadoop the experiment conducted in

the paper shows that the proposed method can work well

with maritime data although the performance is not

satisfying. A discussion about the method's limitation and

potential issues is shown at the end of the paper.

Key words: Maritime Surveillance; Clustering.

I. INTRODUCTION
Density based spatial clustering of applications with noise

(DBSACN) is a data clustering algorithm proposed by martin

Ester,Hans-peter Kriegel,Jorg Sander and Xiaowei Xu in
1996[1]. It is a density based clustering algorithm. Given a

set of points in some space, it groups together points that are

closely packed together (points with many nearby neighbors),

making as outliers points that lie alone in low density regions

(whose nearest neighbors are too far away). DBSCAN is one

of the most common clustering algorithms and also most

cited scientific literature. Numerous applications require the

management of spatial data, i.e. data related to space. Spatial

Database Systems(SDBS) (Gueting 1994)[2] are database

systems for the management of spatial data. Increasingly

large amounts of data are obtained from satellite images, X-

ray crystallography or other automatic equipment. Therefore,
automated knowledge discovery becomes more and more

important in spatial databases. Several tasks of knowledge

discovery in databases (KDD)[3] have been defined in the

literature (Matheus, Chan&Piatetsky- Shapiro 1993)[4]. The

task considered in this paper is class identification, i.e. the

grouping of the objects of a database into meaningful

subclasses. In an earth observation database, e.g., we might

want to discover classes of houses along some river.

Clustering algorithms are attractive for the task of class

identification. However the e application to large spatial

databases rises the following requirements for clustering
algorithms

 Minimal requirements of domain knowledge to

determine the input parameters, because appropriate

values. These values often not knowing advance

then dealing with large databases.

 Discovery of clusters with arbitrary shape, because

the shape of clusters in spatial databases may be

spherical, drawn-out, linear, elongated etc.

 Good efficiency on large databases, i.e. on databases

of significantly more than just a few thousand

objects. Clustering algorithms are attractive for the
task of class identification in spatial databases.

However, the application to large spatial databases rises the

following requirements or clustering algorithms: minimal

requirements of domain Knowledge to determine the input
parameters, discovery of clusters with arbitrary shape and

coding efficiency on large databases. Thee well-known

clustering algorithms offer no solution to the combination of

these requirements in this paper, this resent the new

clustering algorithm DBSCAN relaying on a density-based

notion of clusters which is designed to discover clusters of

arbitrary shape. DBSCAN only one input parameter and

supports user in determining an appropriate value for it. In

2014, the algorithm was awarded the test of time award (an

award given to algorithms which have received substantial

attention in theory and practice) at the leading data mining
conference, KDD[5]. The well-known clustering algorithms

offer no solution to the combination of these requirements. In

this paper, we present the new clustering algorithm

DBSCAN. It requires only one input parameter and supports

the user in determining an appropriate value for it. It

discovers clusters of arbitrary shape. Finally, DBSCAN is

efficient even for large spatial databases. The rest of the

paper is organized as follows. We discuss clustering

algorithms, evaluating them according to the above

requirements. We present our notion of clusters which is

based on the concept of density in the database. Even

introduces the algorithm DBSCAN which discovers such
clusters in a spatial database. We performed an experimental

evaluation of the effectiveness and efficiency of DBSCAN

using synthetic data and data of the SEQUOI2A0 00

benchmark[6]. At last concludes with a summary and some

directions for future research.

II. ARCHITECTURE

Figure 1: System Architecture.

DBSCAN Architecture explains how the data is accessed as

shown in the Figure 1[7]. First of all dataset is given to find

the particular data in the dataset. Dataset is input to the

DBSCAN algorithm. These data set is processed and send to

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1821

partition the data, in the partition of data, dataset is partition

into clusters, these clustering happens on the RAM, and time

taken for the partition is reported by the performance

Graph[8]. Then these clusters are reduced and gives the
cluster results. And the particular data which is needed is

accessed by the cluster result.

III. CLUSTERING ALGORITHM
Consider a set of points in some space to be clustered. For the

purpose of DBSCAN clustering, the points are classified as

core points, (density-) reachable points and outliers[9], as

follows: A point p is core point if at least min Pts points are

within distance d‘ of it and those points are said to be directly

reachable from p. No points are directly reachable from a

non- core point. A point q is reachable from p if there is a

path p1,…pn with p1=p and p(n)=q, where each p(i+1) is
directly reachable from pi(so all the points on the path must

be core points, with the possible exception of q).All points

not reachable from any other point are outliers.

Now if p is a core point, then it forms a cluster together with

all points (core or non-core) that are reachable from it. Each

cluster contains at least one core point. Non -core points can

be part of cluster, but they form its ―edge‖[10], since they

cannot be used to reach more points.

Figure 2: Clustered diagram.

In this diagram, min pts=3. Point A and the other red points

are core points, because at least three Points surrounded it in

and radius. Because they are all reachable from one another,

they form a single cluster. Point B and C are not core points,

but they are reachable from A (via other core points) and thus
belong to the cluster as well. Point N is a noise point that is

neither a core point nor density reachable. Reachability is not

a symmetric relation since, by definition, no point may be

reachable from a non-core point, regardless of distance (so a

non-core point may be reachable, but nothing can be reached

from it). Therefore a further notion of connectedness is

needed to formally define the extent of the clusters found by

DBSCAN. Two points‘ p and q are density –connected if

there is a point ‗O‘ such that both p and q are density

reachable from ‗O‘ density connectedness is symmetric. A

cluster then satisfies two properties: All points within the
cluster are mutually density-connected. If a point is density –

reachable from any point of the cluster, it is part of the

cluster as well.

IV. DBSCAN ALGORITHM.
DBSCAN requires two parameters: d (eps) and the minimum

number of points required to form a dense region (minPts).It

starts with an arbitrary staring point that has not been

visited[11]. This point‘s d-neighborhood many points, a

cluster is started. Otherwise, the point is labeled as noise.

Note that this point might later be found in a sufficiently

sized d- environment of a different point and hence be made

part of cluster.

If a point is found to be dense part of a cluster, its d-

neighborhood is also part of that cluster. Hence, all points

that are found within the d- neighborhood are added, as is
their own d-neighborhood when they are also dense. This

process continues until the density- connected cluster is

completely found. Then, a new unvisited point is retrieved

and processed, leading to the discovery of a further cluster or

noise.

As mentioned before, clustering algorithms are used to

reduce data sets into groups, or clusters, which can be more

readily analyzed and reasoned about. These clusters can then

be used to make predictions about new data, or to find

previously unnoticed connections among existing data. That
makes clustering algorithms useful in a variety of fields,

from machine learning, to data mining, to image analysis.

For a given data set, there are multiple ways to find

commonalities between the data in order to generate clusters.

This characteristic of clustering has led to the development

of several clustering algorithms. Each one of those

algorithms uses different criteria to form clusters from the

data. Among the most widely used algorithms for clustering

we can find K-Means and DBSCAN.DBSCAN is a density-

based clustering algorithm. Density based clustering

algorithms define a cluster as an area that hasa higher data
density than its surrounding area. In DBSCAN density is

measured by analyzing whether a point has at least a

minimum number of points (MinPts) inside a given radius

(d). That is, if the _ neighborhood (points within d) of a

given point has exceeded a particular density threshold

(MinP ts) that given point, and its neighbors, form a cluster.

The DBSCAN algorithm is described in pseudo code in

Algorithm.

Algorithm 1 The DBSCAN algorithm

Input: A set of points X = {p1,p2,...,pn}, the distance

threshold , and the minimum number of points required for a
cluster MinPts.

Output: A set of labeled points X = {p1,p2,...,pn}, where

each point has a flag corresponding to one of CORE,

BORDER or NOISE and in the case of the flag being CORE

or BORDER a corresponding cluster identifier.

clusterIdentifier ← next available cluster identifier

foreach unvisited point p ∈ X do

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1822

mark p as visited

N ← GETN
if |N| < MinPts then

p.flag ← NOISE

Else

p.clusterIdentifier ← clusterIdentifier
p.flag ← CORE

foreach p0 ∈ N do

if p0 is not visited then

mark p0 as visited

N0 ← GETN
if |N0| ≥ MinPts then

p0.flag ← CORE

N ← N ∪ N0

Else

p0.flag ← BORDER

end if

end if
if p0 does not belong to any cluster then

p0.clusterIdentifier ← clusterIdentifier

p0.flag ← BORDER

end if

clusterIdentifier ← next cluster identifier

end for

end if

end for

Algorithm 1: DBSCAN ALGORITHM.

V. COMPLEXITY
DBSACAN visits each point of the database, possibly
multiple times (e.g., as candidates to different clusters). For

practical considerations, however, the time complexity is

mostly governed by the number of region Query invocations.

DBSCAN executes exactly one such query for each point,

and if an indexing structure is used that executes a

neighborhood query in O(log n)[12], an overall average

runtime complexity of O(n log n) is obtained (if parameter d

is chosen in a meaningful way, i.e such that on average only

O(log n) points are returned). Without the use of an

accelerating index structure, or on degenerated data (e.g. all

points within a distance less than d), the worst case run time
complexity remains O(n^2). The distance matrix of size (n^2-

n)/2 can be materialized to avoid distance re computations,

but this need O(n^2) memory, where as a non- matrix based

implementation of DBSCAN only needs O(n) memory.

VI. CONCLUTION
DBSCAN does not require one to specify the number of

clusters in the data priori, as opposed to k-means. DBSCAN

can find arbitrary shaped clusters. It can even find a cluster

completely surrounded by (but not connected to) a different

cluster. Due to the MinPts parameter, the so- called single-

link effect (different clusters being connected by a thin line
of points) is reduced[13]. DBSCAN has a notation of noise,

and is robust to outliers. DBSCAN requires just two

parameters and is mostly insensitive to ordering of the points

in the database. (However, points sitting on the edge of two

different clusters might swap cluster membership if the

ordering of the points is changed, and the cluster assignment

is unique only up to isomorphism.) DBSCAN is designed for

use with database can use that can accelerate region queries,
e.g. using an R*tree[14]. The parameter minPts and d can be

set by a domain expert, if the data is well understood.

DBSCAN is not entirely Deterministic: border points that are

reachable from more than one cluster can be part of either

cluster, depending on the order the data is processed.

Fortunately, this situation does not arise often, and has little

impacted on the clustering result: both on core points and

noise, DBSCAN is deterministic. DBSCAN is a variation

that treats border points as noise, and this way achieves a

fully deterministic result as well as a more consistent

statistical interpretation of density- connected

components[15]. If the data and scale are not well
understood, choosing a meaningful distance threshold d can

be difficult. Future research will have to consider the

following issues. First, we have only considered point

objects. Spatial databases, however, may also contain

extended objects such as polygons. We have to develop a

definition of the density in an Eps-neighborhood in polygon

databases for generalizing DBSCAN. Second, applications of

DBSCAN to high dimensional feature spaces should be

investigated. In particular, the shape of the k-distance graph

in such applications has to be explored.

 REFERENCES

[1] Jain Anil K. 1988. Algorithms for Clustering Data.

Prentice Hall. KaufmanL and RousseeuwR J. 1990.

Finding Groups #~ Data: an Introduction to Cluster

Analysis. John Wiley & Sons.

[2] Matheus C.J.; Chan P.K.; and Piatetsky-Shapiro G.

1993. Systems for Knowledge Discovery in

Databases, 1EEE Transactions on Knowledge and

Data Engineering 5(6):

[3] Wikipedia. (2015, April, 5) Scalability —

Wikipedia, the freeencyclopedia. Accessed 22-July-
2004. [Online]. Available:

http://en. wikipedia.org/wiki/Scalability on

DBSCAN

[4] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B.

Moon, ―Parallel dataprocessing with mapreduce: a

survey,‖ AcM sIGMoD Record, vol. 40,no. 4, pp.

11–20, 2012.

[5] J. Dean and S. Ghemawat, ―Mapreduce: simplified

data processing on large clusters,‖ Communications

of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[6] Wikipedia. (2015, April, 4) Mapreduce —

Wikipedia, the free encyclopedia. Accessed 22-
July-2004. [Online]. Available: http://en.

wikipedia.org/wiki/MapReduce

[7] B.-R. Dai and I.-C. Lin, ―Efficient map/reduce-

based dbscan algorithm with optimized data

partition,‖ in Cloud Computing (CLOUD), 2012

IEEE 5th International Conference on. IEEE, 2012,

pp. 59–66.

International Journal For Technological Research In Engineering

Volume 3, Issue 8, April-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1823

[8] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng,

and J. Fan, ―Mrdbscan: an efficient parallel density-

based clustering algorithm using mapreduce,‖ in

Parallel and Distributed Systems (ICPADS), 2011
IEEE 17th International Conference on. IEEE,

2011, pp. 473–480.

[9] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan,

―Mr-dbscan: a scalable mapreduce-based dbscan

algorithm for heavily skewed data,‖ Frontiers of

Computer Science, vol. 8, no. 1, pp. 83–99, 2014.

[10] M. J. Berger and S. H. Bokhari, ―A partitioning

strategy for nonuniform problems on

multiprocessors,‖ Computers, IEEE Transactions

on, vol. 100, no. 5, pp. 570–580, 1987.

[11] P. Wendell and M. Zaharai. (2015,

February 13) Spark: A review of 2014 and
looking ahead to 2015 priorities. [Online].

Available:https://databricks.com/blog/2015/02/13/sp

ark-a-review-of-2014-and-looking-ahead-to-2015-

priorities.html

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V.

Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E.

[13] Duchesnay, ―Scikit-learn: Machine learning in

Python,‖ Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011. (2015, April 12)

Datasetloadingutilities. [Online]. Available:

http://scikit-learn.org/stable/datasets/

[14] A. Guttman, R-trees: a dynamic index structure for

spatial searching. ACM, 1984, vol. 14, no. 2. M. J.

Franklin, S. Shenker, and I. Stoica, ―Resilient

distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing,‖ in Proceedings of

the 9th USENIX conference on Networked Systems

Design and Implementation. USENIX Association,

2012, pp. 2–2.
[15] Wikipedia. (2015, April, 5) Scalability— Wikipedia,

the free encyclopedia. Accessed 22-July-2004.

[Online]. Available:

http://en. wikipedia.org/wiki/Scalability

