
International Journal For Technological Research In Engineering 

Volume 3, Issue 8, April-2016                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2016.All rights reserved.                                                                          1830 
 

IMPLEMENTING RECONFIGURATION OF LARGE SCALE 

RELIABLE STORAGE SYSTEM BY USING DBQS 
 

E.Tamizhselvi
1
, M.Sanjheeviraaman

2
 

1
M.C.A Student, 

2
Assistant Professor, 

Dept of Computer Applications, Shanmuga Industries Arts and Science College,  

Tiruvannamalai, Tamil Nadu, India 

 
 

ABSTRACT: At present we live in a world of internet 

services such as email, social networks, web searching, and 

more which must store increasingly larger volumes of data. 

These services must run on cheap infrastructure, hence 

they must use distributed storage systems, and they have to 

provide reliability of data for long periods as well as 

availability. Byzantine-fault-tolerant replication mainly 

used in Internet services that store critical state and 

preserves it despite attacks or software errors, which 

enhance the availability and reliability of the services. In 

existing system we assume a static set of replicas, or have 

limitations in how they handle reconfigurations (e.g., in 

terms of the scalability of the solutions or the consistency 

levels they provide).  

 

Reconfiguration handling is one of the limitations; there is 

a huge problem in long-lived large scale systems, whenever 

there is a variation in the membership in the entire lifetime 

of the system. In proposed system, we present a solution for 

dynamically change in membership for a large-scale 

Byzantine-fault-tolerant system. A service tracks 

membership and notifies other system nodes periodically, 

which runs mostly automatically to avoid human 

configurations errors. We implement this membership 

service using distributed hash table called DBQS that 

provide semantics even changes in replica sets. The 

membership service is able to manage a large system and 

the cost to change the system membership is and 

consumption of the power is low.   

Keywords :Byzantine-fault-tolerant, Cloud computing, Data 

authentication, privacy control, Service of the membership, 

Membership of the dynamic system.    

 

I. INTRODUCTION 

The number and popularity of largescale internet service such 

as Google, MSN, and Yahoo have grown significantly in 

recent years. Such services are poised to increase further in 

importance as they become the repository for data in 

ubiquitous computing system. Generally network security is 
to prevent and monitor unauthorized access misuse and 

modification of data.  

 

Here we use membership service under network security 

concept to maintain and carried out the storage system 

service. Now a day’s Byzantine fault tolerant system assumes 

only static set of replicas and it is having limitation in 

handling the reconfiguration.    

 

 
The system is classified into two parts as membership 

service (MS) and DBQS. One is to monitor the membership 

changes and the other is to automatically reconfigure the 

system.  Automatic reconfiguration is mainly done in MS to 

avoid human configuration errors As an Byzantine-Fault-

tolerant[1] group is designed for this reconfiguration and our 
results shows that the MS is able to manage the storage 

system of replicas with low cost, we present a storage system 

DBQS that provides Byzantine-fault-tolerant replicated 

storage with strong consistency.  Practical Byzantine fault 

tolerance (PBFT)[1],describes a new replication algorithm 

that tolerates Byzantine fault (asynchronous environment 

better performance ) the algorithm provides safety if it does 

this by sending eviction messages to other  MS replicas and 

then waiting for signed statements from at least MS 

replicas(including itself). Other MS replicas accept and sign 

a statement saying so if their last n evicting for that node 

have failed where n evict < n propose because the initiation 
of the eviction waited a bit longer than necessary. Most 

eviction proposals will success if the node is really down, all 

non-faulty replicas agree on the sequence numbers of 

requests that commit locally. It provides replicas must 

change view if they are unable to execute request replicas 

probe independently and a replica proposes an eviction for a 

server node that has missed propose probe responses.  

 

 



International Journal For Technological Research In Engineering 

Volume 3, Issue 8, April-2016                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2016.All rights reserved.                                                                          1831 
 

II. PRACTICAL BYZANTINE FAULT TOLERANCE 

A new replication algorithm that is able to tolerant Byzantine 

faults. We implemented a Byzantine fault- tolerant NFS 

service using our algorithm and measured its performance. 
The results show that our service is only 3% lower than 

standard replicated NFS. This paper presents a new practical 

algorithm for state machine replication that tolerates 

Byzantine faults. This means that clients eventually receive 

replies to their requests and those replies are correct 

according to linearizability.   

We use cryptographic techniques [2] to prevent spoofing and 

replays and to detect corrupted messages. Our messages 

contain public-key signatures, message authentication codes 

[3] and message digest produced by collision-resistant hash 

functions. Our algorithm is not vulnerable to this type of 

attack because it does not rely on synchrony for safety. It 
improves the performance of Rampart and secure by more 

than an order of magnitude.  

 Asynchronous verifiable secret sharing and proactive:  

Verifiable secret sharing is an important primitive in 

distributed cryptography [4]. This paper proposes the first 

practical verifiable secret sharing protocol for asynchronous 

networks. The protocol creates a discrete logarithm-based 

sharing and uses only a quadratic number of messages in the 

number of participating servers.   

The second part of this paper introduces proactive 

cryptosystems in asynchronous networks and represents an 
efficient protocol for refreshing the shares of a secret key for 

discrete algorithm [5] based sharing. Finally we propose an 

efficient proactive refresh protocol and on a randomized 

asynchronous multi-valued Byzantine agreement primitive.   

 

III. IMPLEMENTATION 

3.1 Reliable Automatic Reconfiguration:   

In this module, it provides the abstracts of a globally 

consistent view of the system membership. This abstraction 

simplifies the design of application that uses it, since it 

allows different nodes to agree on which server is responsible 
for which subset of the service. It is designed to work at large 

scale e.g. Tens or hundreds of thousands of servers. Support 

for large scale is essential since system today is already large 

and we can expect them to scale further. It is secure against 

Byzantine (arbitrary) faults. Handling Byzantine faults is 

important because it captures the kinds of complex failure 

nodes that have been reported for our target requirement.  

 

3.2 Tracking Membership Service:  

In this module, is only part of what is needed for automatic 

reconfiguration, we assume nodes are connected by an 

unreliable asynchronous network like the internet, where 
messages may be lost, corrupted, delayed, duplicated, out of 

order. While we make no synchrony assumptions for the 

system to meet its safety guarantees, it is necessary to make 

partial synchrony assumptions for liveness. The MS produces 

configurations periodically rather than after every 

membership change. The system moves in a succession of 

time intervals called epochs, and we batch all configuration 

changes at the end of the epoch. Producing configuration 

periodically is a key design decision. It allows applications 

that use the MS to be optimized for long periods of stability. 

It also permits delayed response to failures, which is 

important for several reasons: to avoid unnecessary data 
movement due to temporary disconnections, to offer 

additional protection against denial of service attacks. 

Membership Changes: The MS describes membership 

changes by producing a configuration, which identifies the 

set of servers currently in the system, and sending it to all 

servers. To allow the configuration to be exchange among 

nodes without possibility of forgery, the MS authenticates it 

using a signature that can be verified with a well- known 

public key. The MS assigns each server a unique node ID 

uniformly distributed in a large, circular ID space which 

enables the use of consistent hashing to assign responsibility 

for work in some of our MS protocols. To prevent an 
attacker from adding a group of servers that are all nearby in 

the ID space, we require that the node’s public key must be 

chosen by the trusted authority. Probing: The MS detects 

unreachable servers and marks them as inactive. The MS 

probes servers periodically using unauthenticated ping 

messages, which we expect to be sufficient to detect most 

unreachable servers. However, once a server fails to reply to 

a signed ping subsequent pings to that server request 

signatures until a correctly signed response arrives. Ending 

epochs: To determine when the epoch ends, the MS tracks 

the termination condition. When the termination threshold is 
reached, the MS stops probing, and produces an epoch 

certificate signed by the MS’s private key. The signature in 

the digest of the membership servers and their   reach ability 

status and the epoch number of the new epoch, then the MS 

sends a NEWEPOCH message to the other servers. This 

message contains the certificate and new epoch number and 

describes the configuration changes. It contains the list of 

added, removed, inactive and reconnected servers. The 

message is authenticated by the MS so that verifying it is 

easy. Transferring details is necessary for scalability. 

Freshness:  We provide the freshness by using certificates. 
Clients of the applications using the MS need to verify the 

freshness of their configuration to ensure they are 

communicating with the group that currently stores an item 

of interest and not an old group. Freshness certificates do not 

constraint the MS. It moves to the next epoch when 

thresholds are reached without regard freshness certificates. 

They also do not prevent clients from moving to a new epoch 

and a client need no refresh certificate.  

 

IV. PERFORMANCE EVALUATION 

This section presents our experimental evaluation various 

common measures   are applied for performance evaluation. 
This evaluation defines system size, actual number of servers 

and the time at which a server becomes computed for each 

server.   

4.1 Epoch Performance:  

A final point is that the MS can adjust the number of 

committees dynamically, based system size and 

proberate.The below figure shows that fetch throughput 

decreases from 350 fetches/seconds to  250 fetches/seconds 



International Journal For Technological Research In Engineering 

Volume 3, Issue 8, April-2016                                                ISSN (Online): 2347 - 4718 

 
 

www.ijtre.com                        Copyright 2016.All rights reserved.                                                                          1832 
 

as we increase ping load to near maximal.   

 
V. CONCLUSION 

Storage system DBQS was implemented and membership 

services are provided. Membership service is part of the 
overall project; here the faulty servers can be reused by the 

BFT system. The membership service works mostly 

automatic to avoid human configuration errors. When 

membership changes the replicated service has responsibility 

to the new replica group and state transfer must take place 

from old replicas to new. This is accomplished in DBQS. We 

implemented the membership service and DBQS .Our 

experiments show that our approach is practical and could be 

used in a real deployment, the MS can manage a very large 

number of servers, and reconfigurations have little impact on 

the performance of the replicated service. In future research, 

the more committees are needed for the data will be needed 
in the system size increases. The Membership service can 

accept the committee dynamically is based on system size 

and to add extension of our system. The design of a 

mechanism is determine which machines to place file 

replicas on the other file to use membership service. 

 

        REFERENCES 

[1] A. Clement, M. Marchetti, E. Wong, L. Alvisi, and 

M. Dahlin, “Making Byzantine Fault Tolerant 

Systems Tolerate Byzantine Faults,” Proc.Sixth 

USENIX Symp. Networked Systems Design and 
Implementation. 

[2] M. Bellare and S. Miner, “A Forward-Secure Digital 

Signature Scheme,” Proc. 19th Ann. Int’l 

Cryptology Conf. Advances in Cryptology. 

[3] R. Canetti, S. Halevi, and J. Katz, “A 

ForwardSecure Public-Key Encryption Scheme,” 

Proc. Conf. Advances in Cryptology. 

[4] J. Cowling, D.R.K. Ports, B. Liskov, R.A. Popa, and 

A. Gaikwad, “Census: Location-Aware Membership 

Management for Large-Scale Distributed Systems” 

[5]M. Reiter, “A Secure Group Membership 
Protocol,”  

 

 

 

 

 

Authors: 

Ms.E.TamizhSelvi,  student,  studying in 

MCA,  Department  of  Computer  

Applications,  Shanmuga  Industries  Arts  
and  Science  College,  Tiruvannamalai,  

Tamil Nadu , India.  My research are  

involves  Network,  Cloud Computing  and  

Network Security. I  did  this  Journal  

Paper  under  the  guidance  of  my  project  guide  Mr. M. 

Sanjheeviraaman,  his  motivation  is  to  be  too  good  and  i  

proud  to  do  this  paper  under  his  excellence. 

 

Mr. M. Sanjheeviraaman, M.Sc., 

M.C.A., M. Tech., M.phil., I completed 

his Bachelor degree(Mathematics) in 

Arignar Anna Govt. Arts College from 
University of Madras, M.Sc 

Mathematics in Distance Education 

from University of Madras, Master of 

Computer Applications in Mailam 

Engineering College from Anna 

University and also Master of Technology respectively from 

Bharathidasan University, India. I had one year Industrial 

Experience, presently I am working as an Assistant professor 

in Department of Computer Applications at Shanmuga 

Industries Arts and Science College, Tiruvannamalai, 

TamilNadu, India. My research interests include Cloud 
Computing and Cloud based Security. 


