
International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1938

A SIMPLE AND EFFICIENT PROTOTYPE FOR DYNAMIC SLOT

ALLOCATION FOR HADOOP CLUSTER

Kawsar Jahan
1
, Sujatha. K

2

1
M. Tech Scholar,

2
Asst. Professor, Advanced Information Technology School of Computing & IT,

REVA University, Bangalore, India

Abstract: Hadoop is developed as a remedy to perform large

scale data parallel application in cloud computing

environment. Hadoop framework is basically defined with

three factors: Cluster, workload and User. Each of these is

either homogeneous or heterogeneous which represents the

heterogeneity level of the Hadoop. In this work we

considered the heterogeneity impact for every element using

the scheduler outcome. Performance evaluation is showed

for the Hadoop attributes such as makes span and also

resource utilization. .

Keywords: Hadoop, Homogeneous, Heterogeneous,

Makespan, Scheduler.

I. INTRODUCTION

Hadoop is inspired from an earlier Apache project known as

“Nutch” related to designing of open source web based

search engine. This project was affected by various issues

like expensive hardware and financial support to manage

monthly expenses. In 2002 a working prototype was released,

but a issue of scalability arise when the developer„s stated the

architecture would fail to handle billions of pages in the web.

In 2003 a paper was released describing about Google File
System (GFS). This provided the Nutch group a clue that

they can utilize that order in order to store pages as to

overcome the issue of scalability. Later a new projected was

initiated to make the implementation of their own open

source similar to the GFS. Another paper was published by

the Google describing Map Reduce programming paradigm

and Nutch group designed the algorithms to run in that

standard. Finally with a support of Yahoo a new project

known as Hadoop was emerged [1]. Hadoop is a data-

intensive cluster computing system, in which incoming jobs

are defined based on the Map Reduce programming model.
Map Reduce is a popular paradigm for performing

computations on Big Data in Cloud computing systems A

Hadoop system consists of a cluster, which is a group of

linked resources. Organizations could use existing resources

to build Hadoop clusters - small companies may use their

available (heterogeneous) resources to build a Hadoop

cluster, or a large company may specify a number of

(homogeneous) resources for setting up its Hadoop cluster.

There can be a variety of users in a Hadoop system who are

differentiated based on features such as priority, usage,

guaranteed shares, etc. Similarly, workload in the Hadoop

system may have differing numbers of users‟ jobs and
corresponding requirements. Therefore, a Hadoop system can

be specified using three main factors: cluster, workload, and

user, where each can be either heterogeneous or

homogeneous. Cluster: Is a group of linked resource, where

each resource consists of a computation unit and also a data

storage unit. The computation unit contains a set of slots

wherein every slot is having a specific execution rate. In

majority of hadoop systems, every CPU core is accounted as

single slot. Likewise, data storage unit as specific capacity as

well as data retrieval rate. In hadoop system data are

organized as files usually which are large in size. Every file

is spitted into tiny pieces, known as slices. Generally every

slice in the system have similar size. User: submits jobs to
the system. Hadoop assigns a priority and a minimum share

to each user based on a particular policy (e.g. the pricing

policy in the user‟s minimum share is the minimum number

of slots guaranteed for the user at each point in time.

Workload: consists of a set of jobs, where each job has a

number of map tasks and reduces tasks. A map task performs

a process on the slice where the required data for this task is

located. A reduce task processes the results of a subset of a

job‟s map tasks. The value defines the mean execution time

of job Join resource Investigations on real Hadoop workloads

show that it is possible to classify these workloads into

classes of “common jobs” We define the class of jobs to be
the set of jobs whose mean execution times (on each

resource) are in the same range. There are various Hadoop

schedulers, where each scheduler may consider different

levels of heterogeneity in making scheduling decisions.

Moreover, schedulers are differentiated based on different

performance metrics (e.g., fairness, minimum share

satisfaction, locality, and average completion time) that they

address. There is a growing demand to use Hadoop for

various applications which leads to sharing a Hadoop cluster

between multiple users. The paper is organized as follows,

Section II discusses about Literature survey performed
highlighting the contribution of different authors in the

respective domain. Section III provides a discussion on the

problem statement. Section IV illustrates the research

methodology. Section V illustrates the Implementation

aspects of the project. Whereas result discussion is provided

in Section VI and discussion on conclusion is provided in

section VII. In the following section various contributions

from different authors in hadoop domain is discussed.

II. LITERATURE SURVEY

Following section highlights the different research works and

their contribution in the hadoop domain. Mirajkar et al. [3]
Performed a word count Map-Reduce Job in Single Node

Apache Hadoop cluster and compress data using Lempel-

Ziv-Oberhumer (LZO) algorithm.

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1939

Shi et al. [4] Presented a toolbox from IBM, called MRTuner,

to facilitate holistic optimization for Map Reduce tasks.

Specifically, authors suggested Producer-Transporter-

Consumer (PTC) model, which describes the tradeoffs in the
parallel execution between tasks. Authors additionally

explored the complex relations among around twenty

parameters, which have huge effect on job performance.

Authors have outlined a effective search algorithm to identify

the ideal execution plan. At last, led an intensive test

assessment on two distinct sorts of clusters using the

HiBench suite which covers different Hadoop workloads

from GB to TB size levels. The outcomes demonstrated that

the search latency of MRTuner quicker than that of the state

of art cost-based optimizer, and the effectiveness of the

optimized execution plan is also drastically improved.

Rao and Reddy [5]. Reviewed different possibilities of
scheduler improvements with Hadoop and also demonstrated

certain guidelines on improving the scheduling in hadoop on

distributed environments.

Nayak et al. [6] Proposed the Adaptive Scheduler (AS).In AS

the client‟s needs to submit a Service Level Agreement

(SLA) along with the job. Using the SLA it is checked

whether the vendor is possible to accommodate the job in

order to meet the SLA.If it is achieved the AS schedules and

executes the job through SLA. If not, client is informed to

negotiate with AS so as to both parties can agree on. This

pre-agreement in between the vendors and client will be
advantageous for both. The benefit of the proposed AS is

demonstrated in comparative review available in many

existing schedulers in Hadoop.

Rasooli and Down [7]. Examined the performance of

typically used hadoop schedulers that consists of FIFO and

Fair Sharing (FS).Authors also performed the comparison of

the aforementioned algorithms with COSHH (Classification

and Optimization Based Scheduler for Heterogeneous

Hadoop) developed by the authors. On the basis of their

judgment a hybrid solution is presented which chooses the

appropriate scheduling algorithm for scalable and
heterogeneous Hadoop system in regard to the incoming jobs

and resource availability.

Xie et al. [8] imported a pre-fetching mechanism into Map

Reduce model by preserving its compatibility with the

resident Hadoop. Provided a application using massive data

is using a Hadoop cluster, this strategy will estimates the time

required for executing every task and also preloads data

adaptively to the memory prior to the new task allocated to

computation node.

Xia et al. [9] based on the node health degree nodes are

grouped into three categories so as to assign relevant job

according to the load and guarantee resource load balance.
By comparison with FIFO and Fair scheduling algorithm

through simulation it is seen that proposed algorithm ensures

to minimize job fail rate and enhances cluster throughput.

Yao et al .[10] Suggested a Hadoop scheduler that leverages

the information of workload patterns to minimize average job

response time through dynamically tunings the resource

shares between the users and the each users scheduling

algorithm. From the simulation as well as real experiment

from Amazon EC2 cluster it is evident that the proposed

scheduler minimizes the average Map Reduce job response

time in different system workload scenario in comparison to

FIFO and Fair Schedulers.
Wang et al. [11] proposed an improved Hadoop system

known as FRESH which can provide the best slot setting,

configure slot dynamically and assign tasks to the slots

appropriately. From the experimental result it is seen that

when serving a batch of Map Reduce job, FRESH drastically

enhances the make span and also fairness between jobs.

Yao et al. [12] Suggested YARN scheduler known as HaSTE

which will effectively minimize the make span of Map

Reduce jobs in YARN by leveraging information of

requested resource, capacity of resource and task

dependency. Authors have used HaSTE as a pluggable

scheduler in recent Hadoop YARN and carried evaluation
with traditional Map Reduce benchmarks. Experimental

results showed that the suggested YARN scheduler

effectively minimizes the makes span and enhances resource

utilization in compared to the present scheduling policies.

Verma and Cherkasova [13]. Presented a basic abstraction

wherein every Map Reduce job is represented as a couple of

map and reduce stage durations. Due to such representation

the authors were enable to apply traditional Johnson

algorithm which is designed for creating an ideal two-level

job schedule. Authors evaluated the performance advantages

of the proposed schedule through an detail set of simulations
across different realistic workloads. Results are dependent on

the cluster size and workload. Authors have designed a

heuristic called Balanced Pools which significantly enhances

Johnson's Schedule result in the scenarios where it produce

sub-ideal make span. Through the simulation authors have

validated the experiments in 66 node hadoop cluster.

Huang et al. [14] suggested two speculative technique Such

as "Estimate Remaining Time Using Linear Relationship

Model" (ERUL) and "Extensional Maximum Cot

Performance (exMCP)" ,these techniques are designed to

enhance the prediction of the job's pending time. ERUL is a
dynamic load-aware mechanism that is used by the authors

to provide a solution to the "Longest Approximate Time to

End" (LATE), exMCP takes various slot values. Through the

investigation it is seen that ERUL and exMCP are linked to

accurate estimation of running task's remaining execution

time and reduces the execution time of job.

Bardhan and Mensace [15]. Presented a mathematical model

on the basis of closed Queuing Networks to predict the

execution time of the Map stage of a Map reduce job. The

model traps contention in the compute node and gains

parallelism due to the raised number of slots available to map

tasks. Model is validated on both single and a two node
hadoop environment through experiments. Authors

performed the experiments using different split sizes for

inputs and also different size of map slot to validate their

model.

Luo et al. [16] presented a Hierarchical Map Reduce

framework which collects the computational resources from

various clusters and executes Map Reduce jobs over them.

The framework consists of a global controller which

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1940

performs the splitting of dataset and sends them to multiple

local Map reduce clusters and balances the workload by

allocating task as per the cluster capacity and node capacity.

Global reduction is performed on the basis of local results
sent back to the global controller. Using Auto Dock in Map

Reduce the experiments is carried out which demonstrated

that load balancing algorithm provides a reliable workload

distribution over multiple clusters and also minimizes the

total execution time of the complete Map Reduce execution.

Zhu et al. [17] Studied logged offline scheduling of reducing

make span and reducing overall completion time,

respectively. Authors have considered both pre-emptive as

well as non-preemptive reduce tasks. For make span

reduction in pre emptive side authors have provided a guide

line in the form of algorithm and provided its optimality for

non-preemptive side. Authors composed an approximation
algorithm with worst ratio of 3/2-1/2h where number of

machines is represented by h. On overall complete time

reduction, for non-preemptive side authors have devised a

heuristic. Authors likewise affirm that their algorithm

outperforms state of-art schedulers through experiments.

Malekimajd et al. [18] Presented a fresh upper as well as

lower bounds for Map Reduce job execution period in shared

Hadoop cluster, Authors have also presented a linear

programming model that is capable of reducing cloud

resource costs and job rejection penalties for the multiple
class job execution with deadline guarantees. From the

simulation it is seen that execution time of Map Reduce jobs

drop within 14% of the suggested upper bound in average.

From the numerical analysis it is seen that that the suggested

method is capable of determining the global optimal solution

of linear issue to the system consists of 1000 user class

within 0.5sec.

Zhang et al. [19] Developed a efficient as well as a fast

simulation framework to evaluate and select the appropriate

underlying platform to achieve the require "Service Level
Objectives" (SLOs). From the evaluation study performed

using Amazon EC2 platform reveals that an ideal platform

selection may result in 45-68% cost saving for different

workload mixes. More ever based on the workload the

homogeneous cluster is outperformed by the heterogeneous

solution by 26-42%.Simulation results are validated by

experiments by deploying Hadoop cluster on variety of

Amazon EC2 instances.

III. PROBLEM DESCRIPTION

This section provides a brief discussion on the research

problem pertaining to the work. Hadoop provides the
adaptability to modify the cluster for different applications

since it is configured with huge set of system parameters. It is

little challenging task for the user comprehend and set the

ideal values to those parameters. A typical Hadoop cluster

incorporates a single master node and more than one slave

nodes. The master node runs the Job Tracker routine which is

in charge of scheduling jobs and organizing the execution of

assignments of every job. Every slave node runs the Task

Tracker daemon for facilitating the execution of Map Reduce

jobs. The idea of "slot" is utilized to provide the ability of

each node to accommodate task.

In a Hadoop framework, a slot is allocated as a map slot or a

reduce slot serving map task or reduce tasks, respectively. At

any given time, only single assignment can be running per

slot. The number of accessible slots per node gives the high

level of parallelization in Hadoop, the Hadoop system, in any

case, utilizes fixed number of map slot and reduces slots at

every node as the default setting all through the lifetime of a

cluster. In the fixed designs the values used are generally the

heuristic number which does not take into account the job

features. therefore static settings are not properly customized

and may prevent the performance enhancement of the

complete cluster.

IV. RESEARCH METHODLOGY

This section briefs about the research methodology of the

project. In order to minimize the makes span time of job's,

hadoop system allocates the task among the resources.

Although hadoop systems do not consider communication

cost. In heterogeneous resources with large cluster increasing

a task's distribution will result in large communication

overhead. This in turn results in an increased completion

time. COSHH takes into account of heterogeneity and

resource distribution during task assignment.

In order to maximize locality, it's needed to increase the

probability of the task that are allocated to resources, which

store their input data. Based on the suggested set of job

classes for every resource the decision in COSHH scheduling

is performed. Therefore, the necessary data of the suggested

classes of a resource is replicated on that resource. This can

help to enhance locality, in specific in huge hadoop clusters

where locality is more crucial.

From the result it is seen that COSHH provides notably
better performance in minimizing the average completion

time, and fulfilling the required minimum shares. Compared

to other two schedulers the performance for locality and

fairness metric is competitive.

Queuing Process uses two main strategies known as

classification and optimization based strategy. At the high-

level at the arrival of new job classification strategy specifies

the job class, and performs the storing of the job in

appropriate queue. In case if the arrived job does not fit any

of the present classes, list of classes is updated to add a class

for incoming job. Optimization approach is utilized to
identify an appropriate matching of job classes and feature of

the resources. The result of queuing process is forwarded to

the routing process consisting the list of job classes as well

as suggested set of classes for every resource

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1941

Scheduler

Slot Assigner (SA)

Work load Monitor (WM)

Task Manager Task Manager Task Manager

Slots Slots Slots

Map Reduce Map Reduce Map Reduce

Task Tracker Task Tracker Task Tracker

Status Report

Task

Assignment

Submit a Batch of Job

Figure 1: Architecture of the Proposed System.

Routing Process: When a free resource sends a heartbeat

message to the scheduler, triggers the routing process. The

job selection for the present free resource is done on the basis

of the suggested set of classes from the queuing process that
is sent to routing process. This process chooses a job for

every free slot in resource and the selected job is sent to the

task scheduling process. Task scheduling process selects a

task of the selected job and allocates the task to its respective

slot. Here the scheduler is not restricted to just one resource.

After the selection of the job task scheduling process

allocates number of appropriate task of this job to the

available slots of present free resource. If the available slot is

lesser than the number of incomplete task for the selected

job, the job remains in the queue. During the next heart beat

message from the free resource this job is taken into account

at the time of decision making. Already assigned task will not
be considered. Once every task of the job is assigned the job

will be eliminated from the waiting queue. Routing process

uses the algorithm. The selection of job for the available slot

of the present free resource is done in two stages. In the

initial stage, jobs in the classes in SCR are taken into account

wherein the job selection is achieved on the basis of their

minimum share satisfaction. Which implies that user with

highest distance to achieve minimum share will be allocated

resources early. In the next stage jobs in the classes SCR are

taken to account in the order specified by the present shares

and user priorities.

V. IMPLEMENTATION AND ALGORITHM

This section discusses about the algorithm and program flow

process used in the implementation process. The figure 2

illustrates the flowchart of the dynamic slot allocation

process in hadoop cluster.

Start

Hadoop Cluster

Static Slot Configuration
Hadoop Cluster

Selection

Perform Configuration

Selection of Physical

Machine

Provide number of

cluster

Assign resource to each

slots in the cluster

Estimate current

workload

Job assignment to the

slot

Resource

reqirement

Continue Execution

Stop

Add Cluster

Map Slot & Reduce

Slot

Heterogeneous

Homogeneous

Figure 2: Flow process of dynamic allocation in Hadoop

cluster.

The figure below illustrates the flow diagram of the process,

initially the hadoop cluster are selected. On selection if the

choice s homogenous cluster, then the configuration used is

the statically available one. In case of the heterogeneous

cluster the configuration of involves providing Physical

machine, allocating cluster as well as providing the resources

to the slots. After the resource allocation, slot assignment

module in the work load monitor will estimate the current

workload. Job tracker will perform the job assignment. The
jobs are randomly generated in the simulation. During the

processing if the requirement of the resource arises the job

tracker will dynamically provide the resources by adding a

cluster and allocating resource if not the job execution

continues.

Table 1: Algorithm for dynamic allocation in Hadoop

Cluster.

Input: Job task request

Output: Execution time

Start:

1.select hadoop environment

2.if (He == Hm)

3.{

4. Static Config= {Physical Machine,Cluster,Slots)

5.}

6.else

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1942

7. if (He==Ht)

8.{

9.Dynamic Config={Physical Machine,Cluster,Slots)

10.estimate the slots in map task Sm and Sr

11.Check if (Sm + Sr ≤ ST)

12.check if Sm has sufficient resource to execute workload

13.if (Yes)

14. {

15.Continue

16. else

17.Reschedule resource from Sr to Sm

18.Stop

The above table explains the algorithm used for the dynamic

allocation in hadoop cluster. In case of the homogenous the

configuration is statically performed as depicted in the

process flow diagram. In heterogeneous the configuration is
performed in dynamically which involves the selection of

physical machine, cluster and also slots. Here the slots are

also divided in between the map task and reduce task. The

algorithm checks for the total slots required for the execution

of the task. It also estimates available slots in map task as

well as the reduce task. The slots in the map task (Sm) and

reduce task (Sr) add up to the total slot (ST). it then checks

the individual slots in the map task as well as the reduce task.

It performs the analysis to check if the Sm is having

sufficient resource to execute the job ,if yes it continues

execution, if not the rescheduling of the resource is
performed by allocation the resource from Sr without

effecting the performance. The same process is performed in

case of Sr if it resource deprived.

VI. RESULT ANALYSIS

This section discusses the evaluation of the proposed

algorithm and graphical illustrates the outcome. In figure 3

below provides the comparison of the resource utilization in

homogeneous and heterogeneous environment. From the

graphical presentation it is seen that the resource utilization

in the heterogeneous environment is far better than the
homogeneous environment. This is due to the fact that the

resource utilization is improved by avoiding the starvation of

resource which results in poor performance. The evaluation is

performed theoretically using hypothetical observation.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

R
es

o
u

rc
e

U
ti

li
za

ti
o

n

Number of Trails

Heterogeneous

Homogeneous

Figure 3: Resource utilization comparison.

Another crucial observation carried out in work is the impact

of make span time which also contributes to the performance

of the system.

25 50 75

Figure 4: Make span Comparison

The above figure illustrates the make span comparison of the

proposed system with the existing system. The comparison is

performed for three trails of different number of jobs. From

the graphical observation it is seen that the proposed system

provides a better make span compared to the existing system.

The evaluation is performed hypothetically.

VII. CONCLUSION

Dynamic Adjusting slot configuration is a significant aspect

at the time of processing a huge dataset using Map Reduce

Paradigm. This will optimize the performance of the Map

Reduce fraework. Every job is scheduled by the job tracker

using any one of the scheduling strategy. Slot assignment to

the jobs is performed by the task manager present in the task

tracker. The efficiency as well as robustness of our proposed

slot management method is validated in both homogeneous

and also heterogeneous cluster environment. The

experimental results demonstrate the effectiveness and
robustness of our schemes under both simple workloads and

more complex mixed workloads. The project analyzed the

impact of heterogeneity in every aspects of the hadoop

scheduler performance.

 REFERENCES

[1] Rasooli, Aysan, and Douglas G. Down. "Guidelines

for selecting hadoop schedulers based on system

heterogeneity." Journal of Grid Computing 12.3

(2014): 499-519.

[2] Krish, K. R., Ali Anwar, and Ali R. Butt. "[phi]
Sched: A Heterogeneity-Aware Hadoop Workflow

Scheduler." Modelling, Analysis & Simulation of

Computer and Telecommunication Systems

(MASCOTS), 2014 IEEE 22nd International

Symposium on. IEEE, 2014.

[3] Mirajkar, Nandan, Sandeep Bhujbal, and Aaradhana

Deshmukh. "Perform wordcount Map-Reduce Job

in Single Node Apache Hadoop cluster and

compress data using Lempel-Ziv-Oberhumer (LZO)

algorithm." arXiv preprint arXiv:1307.1517 (2013).

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 1943

[4] Shi, Juwei, et al. "MRTuner: A toolkit to enable

holistic optimization for mapreduce

jobs." Proceedings of the VLDB Endowment 7.13

(2014): 1319-1330.
[5] Rao, B. Thirumala, and L. S. S. Reddy. "Survey on

improved scheduling in Hadoop MapReduce in

cloud environments." arXiv preprint

arXiv:1207.0780(2012).

[6] Nayak, D.; Martha, V.S.; Threm, D.; Ramaswamy,

S.; Prince, S.; Fatimberger, G., "Adaptive

scheduling in the cloud — SLA for Hadoop job

scheduling," in Science and Information Conference

(SAI), 2015 , vol., no., pp.832-837, 28-30 July 2015

[7] Rasooli, Aysan, and Douglas G. Down. "A hybrid

scheduling approach for scalable heterogeneous

Hadoop systems." High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC

Companion:. IEEE, 2012.

[8] Xie, Jiong, et al. "Research on scheduling scheme

for Hadoop clusters."Procedia Computer Science 18

(2013): 2468-2471.

[9] Xia, Yang, et al. "Research on job scheduling

algorithm in hadoop." Journal of Computational

Information Systems 7.16 (2011): 5769-5775.

[10] Yao, Yi, et al. "LsPS: A Job Size-Based Scheduler

for Efficient Task Assignments in Hadoop." Cloud

Computing, IEEE Transactions on 3.4 (2015): 411-
424.

[11] Wang, Jiayin, et al. "Fresh: Fair and efficient slot

configuration and scheduling for hadoop

clusters." Cloud Computing (CLOUD), 2014 IEEE

7th International Conference on. IEEE, 2014.

[12] Yao, Yi, et al. "Haste: Hadoop yarn scheduling

based on task-dependency and resource-

demand." Cloud Computing (CLOUD), 2014 IEEE

7th International Conference on. IEEE, 2014.

[13] Verma, Abhishek, Ludmila Cherkasova, and Roy H.

Campbell. "Orchestrating an ensemble of
MapReduce jobs for minimizing their

makespan." Dependable and Secure Computing,

IEEE Transactions on 10.5 (2013): 314-327.

[14] Huang, Xin, et al. "Novel heuristic speculative

execution strategies in heterogeneous distributed

environments." Computers & Electrical

Engineering (2015).

[15] Bardhan, Shouvik, and D. Menasce. "Queuing

network models to predict the completion time of

the map phase of mapreduce jobs." Proceedings of

the Computer Measurement Group International

Conference. 2012.
[16] Luo, Yuan, et al. "A hierarchical framework for

cross-domain Map Reduce execution." Proceedings

of the second international workshop on Emerging

computational methods for the life sciences. ACM,

2011.

[17] Zhu, Yuqing, et al. "Minimizing makespan and total

completion time in mapreduce-like

systems." INFOCOM, 2014 Proceedings IEEE.

IEEE, 2014.

[18] Malekimajd, Marzieh, et al. "Optimal map reduce

job capacity allocation in cloud systems." ACM

SIGMETRICS Performance Evaluation
Review 42.4 (2015): 51-61.

[19] Zhang, Zhuoyao, Ludmila Cherkasova, and Boon

Thau Loo. "Exploiting cloud heterogeneity to

optimize performance and cost of MapReduce

processing."ACM SIGMETRICS Performance

Evaluation Review 42.4 (2015): 38-50.

