
International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2003

A NOVEL SELF DEFENCE APPROACH FOR WEB APPLICATION

SECURITY

Harsh A Bhatt
1
, Prof. Tejendra Thakur

2

1
PG Student, GTU PG School, Gandhinagar, India,

2
Assistant Professor, UCET, Ahmedabad, India

Abstract: In this era of technology World Wide Web is one

of the most powerful communication channel and service

providers for information delivery over internet today. Most

of the peoples are using web applications. Securing web is

like securing our nation. So, internet security is very much

encouraging task for us. Different kinds of attacks on web

applications are happened like SQL Injection attack, XSS

attack, DoS attack. We have also survey of such attacks

happening in last three to four years. This paper is an effort

to explore the effectiveness of an ontological

knowledgebase for modeling, configuring and querying

over WAF configurations. We are also discussed how to

secure web application from different kind of attacks using

Ontology. We have used ModSecurity web application

firewall and try to improve default security policy rules of it.

We have used Apache Server. Our results show that our

proposed work meaningfully improves configuration errors,

security policy rules of ModSecurity for SQLI attack. SQL

Injection attack is our prime attack and based on this attack

ontology we have create custom security policy rule for

prevention against attack. DVWA is used to perform SQLI

attack.

Keywords: SQL Injection attack, Cross Site Scripting

(XSS), ModSecurity Web Application Firewall, Ontology,

Security, Damn Vulnerable Web Application (DVWA),

Apache

I. INTRODUCTION
Web applications are widely used in all around the world.

Web application security is the prime concern for us. Web

Application Firewall (WAF) is a security measure to protect

web applications from external attacks that exploit

vulnerabilities in web applications.[1] WAF provides

operational security that mitigates the impact of attacks, but it

does not eliminate the vulnerabilities[7] present in the web

application implementation. Web application security

through WAF requires knowledge of HTTP transactions

parameters shared between the web application and client i.e.

Request header, Request body etc. A comprehensive
evaluation criterion for WAFs has been standardized by Web

Application Security Consortium as WAFEC (Web

Application Firewall Evaluation Criteria).WAFEC provides a

comprehensive documentation in understanding the role of

WAF for securing web applications and listing of evaluation

criteria for estimating WAF performance. The evaluation

criteria covers development architecture, HTTP and HTML

support, detection techniques, protection techniques, logging,

reporting and performance and is comprehensive enough for

evaluating QoP for WAFs.[12] This standard covers three

protection strategies for web application which includes

external patching (virtual patching), positive security model

which provide protection independent of the input validation

and requires rules to be continuously updated for the web

application. Management of WAF rule configuration for
administrators has been a complex and error-prone task.

Typical errors involved in WAF configuration are invalid

rule syntax, writing redundant or illogical rules resulting in

poor WAF configuration.[13] Some basic terms for our work

is given below:

A. SQL Injection Attack

SQL Injection refers to an injection attack wherein an

attacker can execute malicious SQL statements (also

commonly referred to as a malicious payload) that control a

web application‟s database server. An SQL Injection can

destroy your database.[15]

B. ModSecurity Web Application Firewall

ModSecurity is a hybrid WAF that relies on the host web

server for some of the work.[9] The only supported web

server at the moment is Apache 2.X. It filters incoming and

outgoing data and is able to stop traffic that is considered

malicious according to a set of predefined rules.

Rules are created and edited using a simple text format,

which affords you great flexibility in writing your own rules.

Once you master the syntax of ModSecurity rules you will be

able to quickly write your own rules to block a new exploit

or stop a vulnerability being taken advantage of.
ModSecurity is a tool that will help you secure your web

applications. ModSecurity resolves around two things: 1.

Configuration and 2. Rules. [10]

C. Ontology

Ontology refers to formal, explicit specification of a shared

conceptualization.

It deals with the question of appearance vs. reality:

 What characterizes being?

 Eventually, what is being?

 How should things be classified?
Ontology represents detailed relationships between concepts.

Ontology is an explicit specification of a representational

vocabulary for a domain: definitions of classes, relations,

functions, constraints and other objects. Most commonly

used ontology language are XML, RDF and RDFS, and

OWL.[8] It gives the actual specification about any things in

proper manner.

D. Damn Vulnerable Web Application (DVWA)

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2004

application that is damn vulnerable. Its main goals are to be

an aid for security professionals to test their skills and tools

in a legal environment, help web developers better

understand the processes of securing web applications.

II. PROBLEM IDENTIFICATION

In survey part we have done analysis of recent web based

attacks. Following figure shows the Top 10 source countries

for web application attacks, Q1 2015

Figure 1: Top 10 Source countries for web application

attacks, Q1 2015[6]

After reviewing all the different papers and survey of

different attacks we have come to know that how the web

attacks are harmful and how it will affect in terms of

financial loss in all over world.

Following fig.2 shows problem identification in existing

system:

Figure 2: Basic WWW Client/Server architecture

This is basic architecture which shows two different clients

are send an HTTP Request to web server through an internet

medium. There are four different website are hosted on main
web server. When web server get request from client it will

forwarded to website and website sent a reply to web server

according to client‟s request and finally web server sent a

reply to client through internet. The main problem in this

architecture is if any of this multiple website which is hosted

on main web server has any types of vulnerabilities then an

attacker will exploit it. As a result a main web server will be

down or it will be hacked and due to this big financial loss

should be occurred. Existing system is working with Web

Application Firewall to protect web-applications from such

kind of attacks.[11] Different WAF like mod_security,

mod_evasive, etc. are used to prevent web-applications from
different attacks like XSS, DoS, SQL Injection, etc.

Following are some problems with the existing system that

can be identified:

 WAF are difficult to configure

 WAF‟s rules can be difficult to write and
understand

 WAF‟s rules can also be overwrite

 Web server will be hacked due to exploitation of

different kind of vulnerabilities

 WAF is difficult to audit

 Overall existing system still lacks in efficient

configuration

III. PROPOSED WORK

To Countermeasure the problem in existing system and to

overcome lacks of configuration in WAF, we have proposed
to create Ontological knowledge base of mod_security web

application firewall and find possible applications of this

ontological knowledge base. Fig.3 shows our proposed

architecture:

Figure 3: Proposed architecture

We have create ontological knowledgebase for ModSecurity.

Using this ontological knowledge base we have modify

default security policy rule and write our custom security

policy rule for ModSecurity.

IV. IMPLEMENTATION DETAILS

First we start our implementation work with creating

different ontology for ModSecurity. We used protégé tool[5]

to create ontology. Following fig.4 and fig.5 shows ontology

for Logging and Rule Language of ModSecurity.

Figure 4: Ontology for Logging

Fig.4 shows ontology for Logging. Logging is a big part of
what ModSecurity does. There are mainly three different

types of Logging:

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2005

 Debug Log: The debug log is going to be your

primary troubleshooting tool, especially initially,

while you‟re learning how ModSecurity works.[14]

 Audit Log: When modsecurity detects an event has
occurred that it has been instructed to log, it will

generate an audit log entry, and if properly

configured an audit log event file. The audit log

event file is the most useful piece of information the

system will collect, so its vital modsecurity be setup

correctly to capture this.[14]

 Remote Logging: ModSecurity comes with a tool

called mlogc (short for ModSecurity Log Collector),

which can be used to transport audit logs in real

time to a remote logging server.

In this Logging ontology each component is connected with
each other via Is-a relationship.

Figure 5: Ontology for Rule Language

Fig.5 shows ontology for Rule Language. It plays an

important role to create security policy rules for

ModSecurity. Basic rule syntax to create security policy rule
for ModSecurity is given below:

SecRule VARIABLES OPERATOR ACTIONS

A. Variables: Tells ModSecurity where to look. Identify

parts of a HTTP transaction each rule works with.

 Request Variables

 Server Variables

 Response Variables

 Miscellaneous Variables

 Parsing Flags

 Collections

 Time Variables

B. Operators: Tells ModSecurity how to look. Specify how a

(transformed) variable to be analyzed is. Only one operator is

allowed per rule.

 String Matching Operators

 Numerical Operators

 Validation Operators

 Miscellaneous Operators

C. Actions: Specify what should be done when a rule

matches.

 Disruptive Actions

 Metadata Actions

 Non-Disruptive Actions

 Flow Actions

 Metadata Actions

 Logging Actions

 Special Actions
D. Value: Value concept refer to the value against which we

are matching our Rule target. Each value concept is linked to

the condition individual through hasvalue property.[12]

 Numerical Value

 Regex Pattern

Now we have start to perform SQLI attack on the existing

system. We have used Ubuntu linux, Apache web server,

Damn Vulnerable Web Application (DVWA) used to

perform SQLI, phpMyAdmin is used to easily configuration

of DVWA database. Install and configure ModSecurity

WAF. Set security level of DVWA to low and start SQLI
attack on it. We have also create database of DVWA and

configure it in phpMyAdmin.

In existing system, ModSecurity Web Application Firewall is

configure in Apache. We have used one magic string for

attack and used the same magic string in the proposed

architecture so that we will identify the effectiveness of

proposed architecture. Magic string which is used for SQLI

attack is given below:

1‟ OR 1=1UNION SELECT null, concat(user,

0x0a,password) FROM users#

Figure 6: SQLI attack with ModSecurity WAF

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2006

When an attacker insert magic string as input then

ModSecurity WAF detect SQLI attack by matched data using

default rule. Once an attacker click on submit then particular

request is drop by Apache. Following fig.7 shows drop
request of an attacker.

Figure 7: Prevention against SQLI

We have also monitoring the audit log file of that scenario.

Fig.8 shows default security policy rule of ModSecurity to

detect an SQLI.

Figure 8: Default ModSecurity rule that identify SQLI

Now we will move towards second scenario, we have created

an SQLI attack ontology. Following fig.9 shows SQLI attack

ontology:

Figure 9: SQLI attack ontology

As shown in fig.8 we can see that how default security policy

rule of ModSecurity is difficult to understand. So we have

improved default security policy rule by modifying it using

ontological knowledgebase and SQLI attack ontology. We

have written custom security policy rule to detect SQLI

attack in the following directory of Apache:

/usr/share/modsecurity-crs/base_rules/custom_rule.conf

Custom rule that we had written for ModSecurity to detect

SQLI is given below:

SecRule“ARGS|!REQUEST_COOKIES:|REQUEST_COO

KIES_NAMES | ARGS_NAMES |XML: /*”(?:

select|union|having) \s*?[^\s]) (?: union select@)/ (?:

union[\w(\s]*? select) “Phase:2, capture, block, tag: msg:

SQL Injection Attack Detected logdata: „Matcheddata : %

{TX.0} found within % {MATCHED_VAR_NAME} : %

{MATCHED_VAR}‟

We have completely followed the basic syntax to create our

custom rule. We have written this security policy rule in

custom_rule.config file and put the default security policy

rule in comment. Once we completed this task we have
enabled our custom rule in respective directory. We have

written this security policy rule in custom_rule.config file

and put the default security policy rule in comment. After

written custom rule we enabled our custom rule in respective

directory.

After enabling custom security policy rule to detect SQLI we

have performed same SQLI attack by using same magic

string as we used in first scenario. Fig. 10 shows same string

as input for SQLI:

Figure 10: Same string as input for SQLI

When an attacker insert same magic string as input then

ModSecurity WAF detect SQLI attack by signature matched

data using our custom rule. Once an attacker click on submit

then particular request is drop by Apache. Following fig.11

shows drop request of an attacker:

Figure 11: Prevention against SQLI scenario 2

We have also monitoring the audit log file of that scenario 2.

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2007

V. TEST OUTCOMES

In first scenario i.e. In Existing system, we have performed

SQLI attack on DVWA with ModSecurity Web Application

Firewall using same magic string so that we will compare the
results of that particular attack. There is no modification in

default security rule of ModSecurity Web Application

Firewall that detect and prevent SQLI. We have install &

configure ModSecurity Web Application Firewall in Apache

server. As a test result we came to know that ModSecurity

WAF has default rule set against different attacks so in this

scenario an SQLI attack was detected by matched data and

HTTP request is blocked by Apache. This second scenario is

the existing system in which default security rules are applied

for particular attack. Default security policy rule of

ModSecurity for SQLI is very tough to understand and also

difficult to write. If any mistakes are happen at the time of
rule to identify it.

In second scenario i.e. In Proposed architecture, to overcome

different issues regarding to security policy rule we have

created Ontological Knowledgebase of ModSecurity. We

have performed same attack as performed in scenario 2 i.e.

SQLI attack using same magic string. We have also created

one specific SQLI attack ontology. Using ModSecurity

Ontological Knowledgebase and SQLI attack ontology we

have created custom security policy rule of ModSecurity

WAF for SQLI attack. We have written our custom security

policy rule in custom_rule.config file in Apache. Once we
have written our custom security policy rule we put default

security policy rule of ModSecurity in comment to get the

result of our custom rule. As a result we came to know that

our custom security policy rule works and detects SQLI

attack based on signature matched data. HTTP request is also

blocked by Apache. Timeout for this result is fast as compare

to the existing system. We have also modify the default

ModSecurity security policy rules and made it as simple as

possible.

VI. CONCLUSION AND FUTURE WORK
We have proposed an approach of using ontology modeling

to represent WAF configuration knowledge for the

administrator. Our ontological knowledgebase of

ModSecurity effectively represents the semantic knowledge

behind ModSecurity web application firewall configurations

for the administrator in writing, editing and updating WAF

configuration and helps him in inferring high level security

policies from firewall configurations. Our ontological

knowledgebase can also help administrator in identifying

redundant, partially overlapping rules and helps in generating

efficient rule sets for WAFs. We have create specific attack

ontology for SQLI attack. Using ModSecurity ontological
knowledgebase and specific ontology for SQLI we have

modify default rule of ModSecurity and made one custom

security policy rule for ModSecurity WAF to prevent our

Apache server from specific one attack i.e. SQLI. On the

basis of our proposed work we conclude that ontology is kind

of new concept and by using ontological knowledge base

administrator can be easily write security policy rules to

protect our main server from different web based attacks. Our

custom security policy rule is work and it can be easily

understand.

In future, we can also create different custom security policy
rule for specific attack by creating different specific attack

ontology and provide security for our server or web

application against different web based attacks. We can also

try to create one tool in which we have set some default

parameters for security policy rule generation when we

provide input different parameters then as an output tool

generate the custom rule according to the input parameters

but it is very tough task.

 REFERENCES

[1] G. Avramescu, M. Bucicoiu, D. Rosner, N.Ţăpuş,

“Guidelines for Discovering and Improving
Application Security”, 2013 19th International

Conference on Control Systems and Computer

Science

[2] A.Pramod , A.Ghosh, A. Mohan, M.Shrivastava and

Dr. R. Shettar, “SQLI Detection System for a safer

Web Application”, 2015 IEEE International

Advance Computing - Conference (IACC)

[3] Li Li, Q. Dong, L. Zhu, and D. Liu, “The

Application of Fuzzing in Web software security

vulnerabilities Test”, 2013 International

Conference on Information Technology and
Applications.

[4] Y.Takamatsu, Y.Kosuga, and K.Kono, “Automated

Detection of Session Manage-ement Vulnerabilities

in Web Applications”, 2012 Tenth Annual

International Conference on Privacy, Security and

Trust.

[5] Emhimed Alatrash "Using Web Tools for

Constructing an Ontology of Different Natural

Languages" A Ph. D. Dissertation submitted to The

Dept. of Computer Science Faculty of Mathematics

University of Belgrade.
[6] Rajesh M. Lomte, Prof. S. A. Bhura Computer

Science & Engineering Department, BNCOE, India.

"Survey of different Web Application Attacks & Its

Preventive Measures" IOSR Journal of Computer

Engineering (IOSR-JCE)e-ISSN: 2278-0661, p-

ISSN: 2278-8727Volume 14, Issue 5 (Sep. - Oct.

2013), PP 46-51 www.iosrjournals.org

[7] https://www.owasp.org

[8] https://en.wikipedia.org/wiki/Ontology_language

[9] Ivan Ristic, ModSecurity Handbook 'The Complete

Guide to Securing Your Web Applications', Feisty

Duck, Jan 2010. Available: ModSecurity Handbook
PDF.

[10] Magnus Mischel, ModSecurity 2.5 'Securing your

Apache installation and web applications',

Birmingham, B27 6PA, UK. Packet Publishing,

Nov 2009.

[11] https://www.modsecurity.org/rules.html

[12] Ali Ahmad, Zahid Anwar, Ali Hur and Hafiz

Farooq Ahmad, "Formal Reasoning of Web

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2008

Application Firewall Rules through Ontological

Modeling" School of Electrical Engineering and

Computer Science, National University of Sciences

and Technology, Islamabad, Pakistan.
[13] OWASP, “ModSecurity Core Rule Set (CRS),”

2012.

[14] http://resources.infosecinstitute.com/analyzing-mod-

security-logs/

[15] www.acunetix.com/websitesecurity/sql-injection/

