
International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2181

TO IMPROVE THE PERFORMANCE OF COMPUTATIONAL GRID

USING FAULT TOLERANT AND DYNAMIC LOAD BALANCING

ALGORITHM FOR GRID ENVIRONMENT

Priya Patel
1
, Mr.Ramesh Prajapati

2
, Dr. Samrat Khanna

3

1
Department of Computer Engineering, SCET, Saij, Kalol, Gujarat, India

2
Rai University, Center for Research & Development Saroda, Dholka, India

3
Dept. of Information Technology, Istar, Sardar patel centre for science & Tech., V.Vnagar, India

ABSTRACTL: Grid computing provides service of sharing

data storage capacity and computer power over the Internet.

Resource management scenarios often include resource

discovery, resource monitoring, resource inventories,

resource provisioning, fault isolation, variety of autonomic

capabilities and service level management activities. Out of

these scenarios, fault tolerance and Load Balancing are

main research areas. In this paper First issue our main

focus is on the development of fault tolerance system for

computational grids and applies the Load Balancing. For

this we had setup a computational grid based on the

Alchemi middleware. In case of failure of the central

manager, backup manager will take its control and avoids

the grid to fail. This makes load balancing and fault

tolerance more important in case of computing grid. This

paper second issue introduces an algorithm which balances

the load among the resources and also increases the

reliability of the grid environment. The main goal of load

balancing is to provide a distributed, low cost, scheme that

balances the load across all the processors.

Keywords: Grid computing, Grid Architecture, Load

balancing, Fault Tolerance.

I. INTRODUCTION
Grid is a system that coordinates resources that are not

subject to centralized control using standard, open, general-

purpose interfaces and protocols to deliver non-trivial

qualities of service. A grid is a type of parallel and

distributed system that enables the allocation, selection and

aggregation of resources distributed across multiple

administrative domains based on their (resources)

availability, capacity, performance, cost and quality of

service requirements. A grid is a collection of machine

sometimes referred to as nodes, resources, donors, members,

clients, hosts, engines and many other such terms [2]. Grid
computing is enabled by relatively high-performance

computers, robust computer networks, grid management

software, and the divisibility of difficult scientific problems.

In Grid computing, individual users can access computers

and data, transparently, without having to consider location,

operating system, account administration, and other details.

Grids tend to be more loosely coupled, heterogeneous, and

geographically distributed. In Grid computing details are

abstracted, and the resources are virtualized [1].

II. LITERATURE SURVEY
FAULT TOLERANCE:

As a result of the complex nature of heterogeneous networks,

fault tolerance [5] is a major concern for the network

administrators, and there are various ways that detection of

such occurrences can be accomplished. When a fault occurs,

it is important to: rapidly determine exactly where the fault

is, Isolate the rest of the network from the failure so that it

can continue to function without interference, Reconfigure or

modify the network in such a way as to minimize the impact

of operation without the failed component or components,

and repair or replace the failed components to restore the
network to its initial state.

A. Function of Fault Tolerance

The fault tolerance is "to preserve the delivery of expected

services despite the presence of fault-caused errors[6] within

the system itself. Errors are detected and corrected, and

permanent faults are located and removed while the system

continues to deliver acceptable service."

From a user's point of view, a distributed application should

continue despite failures. The fault tolerance has become the

main topic of research. Till now there is no single system
that can be called as the complete system that will handle all

the faults in grids. Grid is a dynamic system and the nodes

can join and leave voluntarily. For making fault tolerance

system a success, we must consider:

 How new nodes join the system,

 How computing resources are shared,

 How the resources are managed and distributed

B. Fault Tree Analysis

Because of computational Grid heterogeneity, scale and

complexity, faults become likely. Therefore, Grid
infrastructure must have mechanisms to deal with faults

while also providing efficient and reliable services to its end

users. The fault tree analysis[10] classifies faults that may

take place in Grid Computing. In the figure various kinds of

faults that can occur have been shown. There are mainly six

classes of faults as discussed below:

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2182

Figure 1 Type of Faults

LOAD BALANCING:

Load balancing is a technique to enhance resources, utilizing

parallelism, exploiting throughput improvisation, and to cut

response time through an appropriate distribution of the

applications [9]. To minimize the decision time is one of the

objectives for load balancing which has yet not been
achieved. Job migration is the only efficient way to guarantee

that submitted jobs are completed reliably and efficiently in

case of process failure, processor failure, node crash, network

failure, system performance degradation, communication

delay; addition of new machines dynamically even though a

resource failure occurs which changes the distributed

environment [11].

As following Figure 2 load balancing feature can prove

invaluable for handling occasional peak loads of activity in

parts of a larger organization. These are important issues in

Load Balancing:

An unexpected peak can be routed to relatively idle machines
in the Grid.

If the Grid is already fully utilized, the lowest priority work

being performed on the Grid can be temporarily suspended or

even cancelled and performed again later to make room for

the higher priority work.

Figure 2 Job Migration [5]

III. PROBLEM STATEMENT

In this paper First issue our main focus is on the

development of fault tolerance system for computational

grids. For this we had setup a computational grid based on
the Alchemi middleware. Alchemi is a .NET-based grid

computing framework that provides the Runtime machinery

and programming environment required to construct

computational grid. In case of failure of the central manager,

backup manager will take its control and avoids the grid to

fail. In grid computing the resources are shared and dynamic

in nature, which affects application performance. To improve

the global throughput of these environments, effective and

efficient load balancing algorithms are fundamentally

important. Load Balancing is one of the most important

factors which can affect the performance of the grid

application. Main purpose of load balancing is to analyze
problems due to which load balancing is required in grid

computing and to transfer heavy loaded nodes to lightly

loaded nodes based on job migration policy.

IV. PROPOSED WORK

PROPOSING THE BACKUP MANAGER

While working with the setup grid, the failure of the

centralized manager causes the whole grid to hangs down.

Till the manager doesn’t restart, the grid remains
inaccessible. So to avoid such kind of grid failure, we have

introduced the concept of the backup manager. The backup

manager also uses the heart beat phenomenon to query the

status of manager. The steps for implementing the backup

manager are:

After every heartbeat interval, the leader node sends a packet

to the backup manager. Figure 3 shows the Backup manager

concept. Packet received by the backup manager contains

information about each of the nodes in the group and its

arrival indicates that the leader is up and running. The

backup leader updates its database using the data obtained
from the received packet. In case of absence of packet for

certain predefined time interval lets the backup manager to

consider the master has failed, and it itself takes the control

as new master. This change is multicast to the executors and

they update their connections database in order to accept

Backup Manager as their new master. Figure 3 shows the

new connection established between the executors and the

backup manager. We try to use these steps for providing the

support for backup manager for Alchemi based

computational grids. From there the backup manager

accesses the database to control the grid.

Figure 3: Backup Manager Concept

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2183

Figure 4 Failure of Manager Leads Backup Manager to take

the control

LOAD BALANCING

In this paper we propose a dynamic load balancing algorithm

for improving performance of grid computing. Here we

mention are four steps: load monitoring, synchronization,

rebalancing criteria job migration. In proposed load

balancing algorithm the activities can be categorized as

following:

Arrival of any new job and queuing of that job to any

particular node, Completion of execution of any job, Arrival

of any new resource, Withdrawal of any existing resource.

Code for to algorithm: Function: LoadBalancing_start Return

Type:

Boolean Start:

If (CPU Idle and Free Memory of Node is Min and Queue

Length is Max)

HeavilyLoaded_Node

HeavilyLoaded_list= HeavilyLoaded_list + l (new selected

node);
End if

If (CPU Idle and Free Memory of Node is Max and Queue

Length is Min)

Lightlyloded_Node

End if

Migrate Heavy Loded_Node_Job to Lightly Loded_Node

End

LoadBalancing_start (): this function also return Boolean

value. If on the basis of given parameters

(CPU utilization and queue length) load balancing will be

required it will return true else it will return false. This
function also updates two lists: HeavilyLoaded_list and

LightlyLoaded_list.

 Information Firing Hitting

 Policy Triggering Selection

 Task is

Existing information Triggered selected

Load is collected based on for

 using

 periodic Queue Migration

Balancing approach Length using Job

 Length as

 criteria.

 Task is

Proposed information Triggered selected

Load is collected based on for

 using Migration

 Activity Queue based

Balancing based Length and upon

 CPU

 current consumpt

 Approach CPU Load ion of

 tasks

Main difference between existing Load Balancing algorithm

and proposed Load Balancing is in implementation of three

policies: Information Policy, Triggering Policy and Selection

Policy. For implementation of Information Policy all existing

Load Balancing algorithm use periodic approach, which is

time consuming. The proposed approach uses activity based

approach for implementing Information policy. For

Triggering Load Balancing proposed algorithm uses two

parameters which decide Load Index. On the basis of Load

Index Load Balancer decide to activate Load Balancing

process. For implementation of Selection Policy Proposed
algorithm uses Job length as a parameter, which can be used

more reliably to make decision about selection of job for

migration from heavily loaded node to lightly loaded node.

V. IMPLEMENTATION STRATEGY AND RESULTS

Create Replication Database

Figure 5 Screenshot of Running Application

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2184

Implementation of Backup manager

Figure 6 Screenshot of Backup Manager

Run Application

Figure 7 Prime Number Application

Figure 8 manager fail and connect to backup manager

Experiment results

Input

Range to

find out

prime
number

Total

No of

Executer

Running

Total Time to Complete

execution

 (In

Second)(BM

Application)

(In Minute)

(Existing

BM

Application)

Prime of

1000000

2 00:04:0872 01:04:0944

 3 00:04:0404 01:03:0637

4 00:04:4460 01:01:0265

6 00:04:5240 01:00:0101

8 00:09:6096 01:06:0859

Prime of

10000000

2 00:04:0900 01:05:0945

 4 00:04:0600 01:04:0400

6 00:04:6240 01:00:0010

8 00:13:8060 01:09:7682

Table 1 comparison of Different Number of Executer with

Different input range

Figure 9 Comparison of no of executor running with respect

to time

VI. CONCLUSIONS AND FUTURE ENHANCEMENTS
In this research I analyzed existing Load Balancing

algorithm and proposed an enhanced algorithm which more

efficiently implements three out of five policies implemented

in existing Load Balancing algorithm.I studied the problems

and challenges included with faults in computational grid

and proposed algorithm use for finding the various kind of

faults based on Alchemi. It also calculated the efficiency of
our proposed system under various situations. Future work

includes, find optimal approach for better performance of

applications running in grid. And also we will try to achieve

more efficiency with new police for load balancing.

Furthermore, the proposed algorithm can also be replaced

with the existing work to improve the performance of grid.

International Journal For Technological Research In Engineering

Volume 3, Issue 9, May-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2185

RERERENCES
[1] AmitKapoor,Meenaks Gupta, Vasudha Rani “The

Impact of Load Balacing on Grid Computing

Performance-review”May 2011.
[2] Mr.Gaurav Sharma, JagjitKaur Bhatia “A Review

on Different Approaches for Load Balancing in

Computational Grid” by JGRCS April 2013.

[3] Paritosh Kumar, Dr. InderveerChana, “Load

Balancing and Job Migration in Grid Environment”

Thesis,In computer science and engineering

department, thapar university, July 2009.

[4] ManikMujumdar, MeenakshiBheevgadev, Latesh

Malik, Dr.RajendraPatrikar, “High Performance

Computational Grid –Fault Tolerance at System

Level” 2008 IEEE.

[5] AbhayTripathi, “A Novel Load Balancing
Algorithm in Grid Computing”, JAN-FAB 2014.

[6] Ratnesh Kumar Nath, Ms. InderveerChana, Dr.

(Mrs.) SeemaBawa, “Efficient Load Balancing

Algorithm in Grid Environment”,

ThaparUniversity,May 2007.

[7] K JairamNaik,Dr A Jagan, “A novel algorithm for

fault tolerant job Scheduling and load balancing in

Grid Computing environment”,IEEE 2015.

[8] S.K.Karthikumar, M.UdhayaPreethi, “Fair

Scheduling Approch For Load Balancing and Fault

Tolerant in Grid Environment”, 2013 IEEE.
[9] http://www.gridcomputing.com.

[10] Sumant Jain, jyotiChaudhary, “New Fault Tolerant

Scheduling Algorithm Implemented using Check

Pointing in Grid Computing Envionment”,2014

IEEE.

[11] InderpreetChopra,“Fault Tolerance in

Computational Grids”, GCA'06, 2006.

[12] Mr.RameshPrajapati “Fault Tolerance Mechanism

for Computational Grid Using Checkpoint

Algorithm”, IJEDR, 2013.

[13] MangeshBalpande,UrmilaShrawankar,“Robust fault
Tolerant job scheduling Approach in Grid

Environment”,IEEE 2014

[14] SumantJain,JyotiChaudhary,“New Fault Tolerant

scheduling Algorithm implemented using check

Pointing n Grid Computing Environment”,IEEE

2014

[15] K.Nirmaladevi ,A.Tamilarasi, “Dynamic Scheduling

in Grid environment with the improvement of Fault

tolerant level ”,IEEE ,April 2015

[16] S.Gokuldev, ShahnaMoideen, Associate Professor

in Computer of science and Engineering, “Global

Load Balancing and Fault Tolerant Scheduling in
Computational Grid”, Published in IJEIT, May

2013.

[17] PrakashKumar,PradeepKumar,Vikas Kumar, “An

Effective Dynamic Load Balacing Algorithm for

Grid System” IJETT, August 2013.

[18] R.Manimala,P.Suresh, “Load balancing job

Scheduling Approach for Grid Environment”, IEEE

2015.

[19] Ankita Jindal RK Bansal,SavinaBansal “Efficint

Load Balancing Scheduling for Deadline

Constrained Tasks on Grid Computing” IEEE.

[20] AnkitPunia, Ms.Pooja Mittal, “A Review: Grid
Computing”, IJCSMC, April 2014.

[21] Prakash Kumar, Pradeep Kumar, Vikas Kumar,

“Computational Grid System Load Balancing Using

an Efficient Scheduling Technique”, IJCTT, August

2013.

[22] Jagdishchandrapatni, Dr. M. S. Aswal “Load

balancing Strategies for Grid Computing” IEEE,

2011.

[23] Dr.D.V.SubbaRao, “Automatic checkpointing based

on Fault Tolerance in Computational Grid”, IEEE

2014.

[24] P. Latchoumy1 and P. Sheik Abdul Khader “Survey
on Fault Tolerance in Grid Computing”, Ijcses 2011

http://www.gridcomputing.com/

