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ABSTRACT: Many pipelined adaptive signal processing 

systems are subject to a trade-off between throughput and 

signal processing performance incurred by the pipelined 

adaptation feedback loops. In the conventional 

synchronous design regime, such throughput/performance 

trade-off is typically fixed since the pipeline depth is usually 

determined in the design phase and remains unchanged in 

the run time. Nevertheless, in many reallife scenarios, the 

overall system performance can be potentially improved if 

we can run-time dynamically configure this trade-off. With 

this motivation, we propose to apply self-timed pipeline, an 

alternative to synchronous pipeline, to implement the 

pipelined adaptive signal processing systems, in which the 

pipeline depth can be dynamically changed to realize run-

time configurable throughput/performance trade-offs. 

Based on a well-known high speed self-timed pipeline style, 

we developed architecture and circuit level design 

techniques to implement the self-timed pipelined adaptation 

feedback loop with configurable pipeline depth. We 

demonstrate the proposed design approach using a delayed 

least mean square (DLMS) adaptive equalizer for magnetic 

recording read channel. The data transfer rate in hard disk 

varies as the read head moves among tracks with different 

distance from the center of the disk platter. By adjusting the 

pipeline depth on-the-fly, the DLMS equalizer can 

dynamically track the best equalization performance 

allowed by the varying data transfer rates. Simulation result 

shows a significant performance improvement compared 

with its synchronous counterpart.  

Keywords: Manchester coding, Encoder, Decoder, NRZ, 

Moore’s law, UART, clock frequency 

 

I. INTRODUCTION 

Over the last two decades, adaptive signal processing has 

developed into a self-contained field [1], [2] that finds wide 

range of real-life applications such as adaptive equalization, 

noise and echo cancellation, linear predictive coding, and 
adaptive beam-forming. Adaptive signal processing 

algorithms are characterized by their recursive operations for 

realizing algorithmic self-designing/adaptation. To realize 

high-throughput VLSI implementation of adaptive signal 

processing algorithms, architecture-level technique pipelining 

is typically used [3]. Pipelined adaptive signal processing 

systems are essentially subject to a trade-off between system 

throughput and signal processing performance, i.e., deeper 

pipelined adaptation feedback loop can realize higher 

throughput, but the delayed feedback will incur larger 

performance degradation. It should be pointed out that, for 

other recursive algorithms such as infinite impulse response 
(IIR) filtering and Viterbi algorithm, direct pipelining may  

 

simply ruin their functionality and appropriate algorithm-

level modification is required for the use of pipelining. A 

pipelined adaptive signal processing algorithm implemented 
using the conventional synchronous pipeline typically has a 

fixed pipeline depth that is determined in the design phase to 

accommodate the highest run-time throughput requirement. 

Although it is possible to on-the-fly configure the pipeline 

depth of synchronous pipeline by selectively bypassing 

certain levels of registers, this is very inflexible and cannot 

realize fine-grain graceful configuration on the 

throughput/performance trade-offs. For example, consider an 

8-stage pipelined recursive adaptation loop in which the 

registers are almost evenly placed along the loop for 

maximizing the throughput. If we bypass one level of 
registers to realize a 7-stage pipeline, the delay of the critical 

path may double and the throughput will reduce almost by 

half. Self-timed pipeline [4], [5] works in a different way 

from its synchronous counterpart. Without a common and 

discrete notion of time, self-timed pipeline relies on the 

handshake between components to perform the 

synchronization and communication. Each distinct data 

propagating through a selftimed pipeline is conventionally 

called a token. The pipeline depth of a self-timed pipeline 

simply equals the number of tokens present in the pipeline at 

the same time. Hence, we can dynamically configure the 

pipeline depth by controlling the number of tokens present in 
the pipeline. This property of self-timed pipeline has been 

exploited in the design of a mixed synchronous-

asynchronous FIR filter that can support variable latency (in 

terms of clock cycles) [6] and power management of an 

embedded, single-issue processor [7]. In pipelined adaptive 

signal processing systems, the pipeline depth of the 

adaptation feedback loops is the key to tune the inherent 

tradeoff between throughput and signal processing 

performance. This directly motivates us to apply self-timed 

pipeline for the implementation of adaptive signal processing 

systems to realize gracefully configurable 
throughput/performance tradeoff. This can be leveraged to 

improve the overall system performance in many 

circumstances. For example, for adaptive signal processing 

systems with variable data rate, we can dynamically adjust 

the pipeline depth to the minimum allowable value according 

to the current data rate to realize the best signal processing 

performance. Although the basic idea of the above design 

approach is simple and intuitive, how to implement it in the 

real systems involves the following three critical design 

issues: 

1) What type of self-timed pipeline structure should be used? 

Clearly, to justify the practicality of this design approach, the 
employed self-timed pipeline must be able to support the 
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same (or comparable) throughput as its synchronous 

counterpart when they have the same pipeline depth. This 

means that the recursive self-timed pipeline datapath should 

have the same (or comparable) propagation delay as its 
synchronous counterpart. This is a very strict requirement 

since most self-timed pipeline design schemes involve extra 

delay overhead for realizing self-timed handshake and have 

the longer latency than their synchronous counterparts, 

although they can support very fine-grain pipeline to realize 

high throughput. In this work, we propose to use the well-

known Ted William’s high-speed self-timed pipeline [4], [8] 

because of its zerodelay-overhead feature (i.e., no extra 

handshake delay is incurred when data propagate through the 

pipeline). Hence the zero-delay-overhead pipeline can 

achieve the same latency performance as its synchronous 

counterpart. 
2) How to realize the self-timed data flow synchronization in 

the recursive adaptation loop? In self-timed data path, 

synchronization of parallel computational threads relies on 

forks and joins, where fork refers to a stage with one input 

channel and multiple output channels and join refers to a 

stage with multiple input channels and a single output 

channel. The recursive adaptation loop of adaptive signal 

processing algorithms contains many forks and joins. 

However, like many other self-timed pipeline styles, the 

zero-delay-overhead self-timed pipeline was initially 

proposed for linear datapath (i.e., without forks and joins). 
Therefore, it must be appropriately modified to support forks 

and joins.  

3) How to realize run-time addition/removal of tokens in 

order to change the pipeline depth? In a feed forward only 

datapath, the pipeline depth can be readily changed by 

adjusting the input data rate. However, as we will show later, 

it is not trivial to change the pipeline depth in recursive 

adaptation loops. We have to design some special circuit 

elements that can be placed on the recursive adaptation loop 

to realize run-time addition/removal of tokens. 

 
II. BACKGROUND 

This section briefly describes the zero-delay-overhead 

selftimed pipeline according to [4] and discusses some basic 

concepts and properties of self-timed pipeline. For detailed 

discussion on self-timed design, readers are referred to [5]. 

Fig. 1(a) shows the structure of a zero-delay-overhead 

selftimed pipeline, where the function block at each pipeline 

stage is implemented using dynamic differential cascode 

voltage switch logic (DCVSL) [12] as illustrated in Fig. 1(b). 

The data validity information in support of self-timed 

operation is embedded into the dual-rail signaling of the 

DCVSL logic: When the dual-rail output F and F are both 0, 
it represents an invalid datum; when one of F and F switches 

to 1 during evaluation (EN=1), it represents a valid datum (1 

or 0). The completion detector (CD) at each stage, as shown 

in Fig. 1(a), generates 1 when it detects valid data, otherwise 

generates 0. The basic idea of zero-delay-overhead self-timed 

pipeline is to make each DCVSL stage keep ready-to-

evaluate status so that it can start the evaluation as soon as 

tokens arrive, hence tokens can propagate through the 

pipeline without being blocked (or delayed) by handshake. 

According to the pipeline as shown in Fig. 1(a), the operation 

of zero-delay-overhead self-timed pipeline can be described 

as follows: The pipeline is initialized in such a way that each 
stage generates invalid output data (i.e., each ACKi is 0) and 

is ready to evaluate (i.e., each ENi is 1). Once valid data 

enter the pipeline and reach stage n, stage n starts the 

evaluation; after finishing the evaluation, it outputs valid 

data to its successor (i.e., stage n + 1) that will subsequently 

start the evaluation. The output valid data of stage n will 

invoke ACKn switch from 0 to 1. As both EN n and ACK n 

are 1, according to Fig. 1(a), ENn−1 will switch from 1 to 0, 

leading to the precharge of stage n − 1. In the same manner, 

after the stage n + 1 finishes the evaluation and generates 

valid data, stage n + 2 will start to evaluate and stage n will 

be precharged (i.e., ENn switches from 1 to 0). Clearly, 
ENn=0 will make ENn−1 switch back to 1 so that stage n − 1 

becomes ready to receive and evaluate new valid data. In this 

way, valid data can propagate through the pipeline datapath. 

The name zero-delayoverhead comes from the fact that the 

forward propagation latency exactly equals the function 

block latency without any extra delay incurred by self-timed 

handshake as in many other self-timed pipeline design styles. 

Such high speed performance comes at the cost of degraded 

robustness, i.e., to guarantee the correct functionality, the 

precharge of a stage must be faster than the evaluation of its 

successor. This assumption is practically reasonable and can 
be easily satisfied in the real implementations. Finally, we 

note that the dual-rail dynamic logic DCVSL is self-

consistent with such zero-delay-overhead self-timed 

handshake and can provide a 2x speed performance 

advantage compared with conventional static CMOS logic. 

As the cost, dynamic circuits generally suffer from higher 

power dissipation and less noise immunity. 

 

 
Fig. 1. (a) Zero-delay-overhead self-timed pipeline structure, 

and (b) DCVSL structure. 
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III. DESIGN OF PASTA 

In this section, the architecture and theory behind PASTA is 

presented. The adder first accepts two input operands to 

perform half additions for each bit. Subsequently, it iterates 
using earlier generated carry and sums to perform half-

additions repeatedly until all carry bits are consumed and 

settled at zero level. 

A. Architecture of PASTA 

The general architecture of the adder is shown in Fig. 1. The 

selection input for two-input multiplexers corresponds to the 

Req handshake signal and will be a single 0 to 1 transition 

denoted by SEL. It will initially select the actual operands 

during SEL=0and will switch to feedback/carry paths for 

subsequent iterations using SEL=1. The feedback path from 

the HAs enables the multiple iterations to continue until the 

completion when all carry signals will assume zero values 

 
Fig. 2. General block diagram of PASTA 

 

B. State Diagrams 

In Fig. 3, two state diagrams are drawn for the initial phase 

and the iterative phase of the proposed architecture. Each 

state is represented by (Ci+1Si) pairwhereCi+1, Si represent 

carry out and sum values, respectively, from the ith bit adder 

block. During the initial phase, the circuit merely works as a 
combinational HA operating in fundamental mode. It is 

apparent that due to the use of HAs instead of FAs, state (11) 

cannot appear. During the iterative phase (SEL=1), the 

feedback path through multiplexer block is activated. The 

carry transitions (Ci) are allowed as many times as needed to 

complete the recursion. From the definition of fundamental 

mode circuits, the present design cannot be considered as a 

fundamental mode circuit as the input–outputs will go 

through several transitions before producing the final output. 

It is not a Muller circuit working outside the fundamental 

mode either as internally; several transitions will take place, 

as shown in the state diagram. This is analogous to cyclic 
sequential circuits where gate delays are utilized to separate 

individual states. 

 
Fig. 3. State diagrams for PASTA. (a) Initial phase. (b) 

Iterative phase 

C. Recursive Formula for Binary Addition 

Let S ji andC j i+1 denote the sum and carry, respectively, 

for ith bit at the jth iteration. The initial condition (j =0) for 

addition is formulated as follows  

 
Thejth iteration for the recursive addition is formulated by 

 
The recursion is terminated atkth iteration when the 

following condition is met: 

 
Now, the correctness of the recursive formulation is 

inductively proved as follows.  

Theorem 1:The recursive formulation of (1)–(4) will produce 

correct sum for any number of bits and will terminate within 

a finite time. 

Proof: We prove the correctness of the algorithm by 

induction on the required number of iterations for completing 
the addition (meeting the terminating condition). 

Basis: Consider the operand choices for which no carry 

propagation is required, i.e., C0
i = 0 for ∀i,i ∈[0..n]. The 

proposed formulation will produce the correct result by a 

single-bit computation time and terminate instantly as (4) is 

met. 

Induction: Assume that Ck
i+1≠0 forsomeith bit at kth 

iteration. Let l be such a bit for which Ck
l+1 =1. We show that 

it will be successfully transmitted to next higher bit in the 

(k+1)th iteration. As shown in the state diagram, the kth 

iteration of lth bit state (Ck
l+1,S

k
l) and (l +1)th bit state 

Ck
l+2,S

k
l+1) could be in any of (0,0), (0,1),or(1,0) states. As 

Ck
l+1 =1, it implies that Sk

l =0. hence, from (3),Ck+1
l+1 =0 for 

any input condition between 0to l bits. 

We now consider the (l +1)th bit state (Ck
l+2,S

k
l+1) for kth 

iteration. It could also be in any of (0,0), (0,1),or(1,0) states. 

In(k+1)th iteration, the(0,0)and(1,0)states from the kth 

iteration will correctly produce output of(0,1) following (2) 

and (3). For(0,1) state, the carry successfully propagates 

through this bit level following (3). 

Thus, all the single-bit adders will successfully kill or 

propagate the carries until all carries are zero fulfilling the 
terminating condition. The mathematical form presented 

above is valid under the condition that the iterations progress 

synchronously for all bit levels and the required input and 

outputs for a specific iteration will also be in synchrony with 

the progress of one iteration. In the next section, we present 

an implementation of the proposed architecture which is 

subsequently verified using simulations. 

 

IV. IMPLEMENTATION 

A CMOS implementation for the recursive circuit is shown 

in Fig. 3. For multiplexers and AND gates we have used 

TSMC library implementations while for the XOR gate we 
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have used the faster ten transistor implementation based on 

transmission gate XORto match the delay with ANDgates 

[4]. The completion detection following (4) is negated to 

obtain an active high completion signal (TERM). This 
requires a large fan-in n-input NORgate. Therefore, an 

alternative more practical pseudo-nMOS ratio-ed design is 

used. The resulting design is shown in Fig. 3(d). Using the 

pseudo-nMOS design, the completion unit avoids the high 

fan-in problem as all the connections are parallel. The pMOS 

transistor connected toVDDof this ratio-ed design acts as a 

load register, resulting in static current drain when some of 

the nMOS transistors are on simultaneously. In addition to 

the Cis, the negative of SEL signal is also included for the 

TERM signal to ensure that the completion cannot be 

accidentally turned on during the initial selection phase of the 

actual inputs. It also prevents the pMOS pull up transistor 
from being always on. Hence, static current will only be 

flowing for the duration of the actual computation 

 

 

 

 
Fig. 3. CMOS implementation of PASTA. (a) Single-bit sum 

module. (b) 2×1 MUX for the 1 bit adder. (c) Single-bit carry 

module. (d) Completion signal detection circuit. 

 

V. SIMULATION RESULTs 

PASTA: 

 
Synthesis Results: 

RTL Schematic: 

 
Technology Schematic: 
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Design Summary: 

 
 

VI. CONCLUSION 

In this paper, for the first time, we propose to exploit the 

dynamic pipelining property of self-timed pipeline to realize 

reconfigurable throughput/performance trade-off in pipelined 

adaptive signal processing systems. PRML read channel 
equalizer is considered in this work as a test vehicle. For 

practical implementation, we propose to use a zero-delay-

overhead selftimed pipeline style that supports very high 

speed operation. We develop techniques to enable the 

application of zerodelay-overhead self-timed pipeline in this 

context and realize run-time pipeline depth control. 

Simulations under variable data rate scenarios demonstrate a 

significant performance gain. It is our hope that this work 

will motivate the reallife adaptive signal processing system 

designers to re-think their design from a self-timed 

perspective integrally at the algorithm, architecture, and 
circuit levels for potential system performance improvement. 
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