
International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2604

DESIGN OF LOW LATENCY PARALLEL SELF TIMED ADDER

Niranjane Pawan Kumar
1
, Dr. M.K. Charan

2

1
PG Scholar, Dept of ECE,

2
Associate Professor

Malla Reddy Engineering College (Autonomous), Hyderabad.

ABSTRACT: Many pipelined adaptive signal processing

systems are subject to a trade-off between throughput and

signal processing performance incurred by the pipelined

adaptation feedback loops. In the conventional

synchronous design regime, such throughput/performance

trade-off is typically fixed since the pipeline depth is usually

determined in the design phase and remains unchanged in

the run time. Nevertheless, in many reallife scenarios, the

overall system performance can be potentially improved if

we can run-time dynamically configure this trade-off. With

this motivation, we propose to apply self-timed pipeline, an

alternative to synchronous pipeline, to implement the

pipelined adaptive signal processing systems, in which the

pipeline depth can be dynamically changed to realize run-

time configurable throughput/performance trade-offs.

Based on a well-known high speed self-timed pipeline style,

we developed architecture and circuit level design

techniques to implement the self-timed pipelined adaptation

feedback loop with configurable pipeline depth. We

demonstrate the proposed design approach using a delayed

least mean square (DLMS) adaptive equalizer for magnetic

recording read channel. The data transfer rate in hard disk

varies as the read head moves among tracks with different

distance from the center of the disk platter. By adjusting the

pipeline depth on-the-fly, the DLMS equalizer can

dynamically track the best equalization performance

allowed by the varying data transfer rates. Simulation result

shows a significant performance improvement compared

with its synchronous counterpart.

Keywords: Manchester coding, Encoder, Decoder, NRZ,

Moore’s law, UART, clock frequency

I. INTRODUCTION

Over the last two decades, adaptive signal processing has

developed into a self-contained field [1], [2] that finds wide

range of real-life applications such as adaptive equalization,

noise and echo cancellation, linear predictive coding, and
adaptive beam-forming. Adaptive signal processing

algorithms are characterized by their recursive operations for

realizing algorithmic self-designing/adaptation. To realize

high-throughput VLSI implementation of adaptive signal

processing algorithms, architecture-level technique pipelining

is typically used [3]. Pipelined adaptive signal processing

systems are essentially subject to a trade-off between system

throughput and signal processing performance, i.e., deeper

pipelined adaptation feedback loop can realize higher

throughput, but the delayed feedback will incur larger

performance degradation. It should be pointed out that, for

other recursive algorithms such as infinite impulse response
(IIR) filtering and Viterbi algorithm, direct pipelining may

simply ruin their functionality and appropriate algorithm-

level modification is required for the use of pipelining. A

pipelined adaptive signal processing algorithm implemented
using the conventional synchronous pipeline typically has a

fixed pipeline depth that is determined in the design phase to

accommodate the highest run-time throughput requirement.

Although it is possible to on-the-fly configure the pipeline

depth of synchronous pipeline by selectively bypassing

certain levels of registers, this is very inflexible and cannot

realize fine-grain graceful configuration on the

throughput/performance trade-offs. For example, consider an

8-stage pipelined recursive adaptation loop in which the

registers are almost evenly placed along the loop for

maximizing the throughput. If we bypass one level of
registers to realize a 7-stage pipeline, the delay of the critical

path may double and the throughput will reduce almost by

half. Self-timed pipeline [4], [5] works in a different way

from its synchronous counterpart. Without a common and

discrete notion of time, self-timed pipeline relies on the

handshake between components to perform the

synchronization and communication. Each distinct data

propagating through a selftimed pipeline is conventionally

called a token. The pipeline depth of a self-timed pipeline

simply equals the number of tokens present in the pipeline at

the same time. Hence, we can dynamically configure the

pipeline depth by controlling the number of tokens present in
the pipeline. This property of self-timed pipeline has been

exploited in the design of a mixed synchronous-

asynchronous FIR filter that can support variable latency (in

terms of clock cycles) [6] and power management of an

embedded, single-issue processor [7]. In pipelined adaptive

signal processing systems, the pipeline depth of the

adaptation feedback loops is the key to tune the inherent

tradeoff between throughput and signal processing

performance. This directly motivates us to apply self-timed

pipeline for the implementation of adaptive signal processing

systems to realize gracefully configurable
throughput/performance tradeoff. This can be leveraged to

improve the overall system performance in many

circumstances. For example, for adaptive signal processing

systems with variable data rate, we can dynamically adjust

the pipeline depth to the minimum allowable value according

to the current data rate to realize the best signal processing

performance. Although the basic idea of the above design

approach is simple and intuitive, how to implement it in the

real systems involves the following three critical design

issues:

1) What type of self-timed pipeline structure should be used?

Clearly, to justify the practicality of this design approach, the
employed self-timed pipeline must be able to support the

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2605

same (or comparable) throughput as its synchronous

counterpart when they have the same pipeline depth. This

means that the recursive self-timed pipeline datapath should

have the same (or comparable) propagation delay as its
synchronous counterpart. This is a very strict requirement

since most self-timed pipeline design schemes involve extra

delay overhead for realizing self-timed handshake and have

the longer latency than their synchronous counterparts,

although they can support very fine-grain pipeline to realize

high throughput. In this work, we propose to use the well-

known Ted William’s high-speed self-timed pipeline [4], [8]

because of its zerodelay-overhead feature (i.e., no extra

handshake delay is incurred when data propagate through the

pipeline). Hence the zero-delay-overhead pipeline can

achieve the same latency performance as its synchronous

counterpart.
2) How to realize the self-timed data flow synchronization in

the recursive adaptation loop? In self-timed data path,

synchronization of parallel computational threads relies on

forks and joins, where fork refers to a stage with one input

channel and multiple output channels and join refers to a

stage with multiple input channels and a single output

channel. The recursive adaptation loop of adaptive signal

processing algorithms contains many forks and joins.

However, like many other self-timed pipeline styles, the

zero-delay-overhead self-timed pipeline was initially

proposed for linear datapath (i.e., without forks and joins).
Therefore, it must be appropriately modified to support forks

and joins.

3) How to realize run-time addition/removal of tokens in

order to change the pipeline depth? In a feed forward only

datapath, the pipeline depth can be readily changed by

adjusting the input data rate. However, as we will show later,

it is not trivial to change the pipeline depth in recursive

adaptation loops. We have to design some special circuit

elements that can be placed on the recursive adaptation loop

to realize run-time addition/removal of tokens.

II. BACKGROUND

This section briefly describes the zero-delay-overhead

selftimed pipeline according to [4] and discusses some basic

concepts and properties of self-timed pipeline. For detailed

discussion on self-timed design, readers are referred to [5].

Fig. 1(a) shows the structure of a zero-delay-overhead

selftimed pipeline, where the function block at each pipeline

stage is implemented using dynamic differential cascode

voltage switch logic (DCVSL) [12] as illustrated in Fig. 1(b).

The data validity information in support of self-timed

operation is embedded into the dual-rail signaling of the

DCVSL logic: When the dual-rail output F and F are both 0,
it represents an invalid datum; when one of F and F switches

to 1 during evaluation (EN=1), it represents a valid datum (1

or 0). The completion detector (CD) at each stage, as shown

in Fig. 1(a), generates 1 when it detects valid data, otherwise

generates 0. The basic idea of zero-delay-overhead self-timed

pipeline is to make each DCVSL stage keep ready-to-

evaluate status so that it can start the evaluation as soon as

tokens arrive, hence tokens can propagate through the

pipeline without being blocked (or delayed) by handshake.

According to the pipeline as shown in Fig. 1(a), the operation

of zero-delay-overhead self-timed pipeline can be described

as follows: The pipeline is initialized in such a way that each
stage generates invalid output data (i.e., each ACKi is 0) and

is ready to evaluate (i.e., each ENi is 1). Once valid data

enter the pipeline and reach stage n, stage n starts the

evaluation; after finishing the evaluation, it outputs valid

data to its successor (i.e., stage n + 1) that will subsequently

start the evaluation. The output valid data of stage n will

invoke ACKn switch from 0 to 1. As both EN n and ACK n

are 1, according to Fig. 1(a), ENn−1 will switch from 1 to 0,

leading to the precharge of stage n − 1. In the same manner,

after the stage n + 1 finishes the evaluation and generates

valid data, stage n + 2 will start to evaluate and stage n will

be precharged (i.e., ENn switches from 1 to 0). Clearly,
ENn=0 will make ENn−1 switch back to 1 so that stage n − 1

becomes ready to receive and evaluate new valid data. In this

way, valid data can propagate through the pipeline datapath.

The name zero-delayoverhead comes from the fact that the

forward propagation latency exactly equals the function

block latency without any extra delay incurred by self-timed

handshake as in many other self-timed pipeline design styles.

Such high speed performance comes at the cost of degraded

robustness, i.e., to guarantee the correct functionality, the

precharge of a stage must be faster than the evaluation of its

successor. This assumption is practically reasonable and can
be easily satisfied in the real implementations. Finally, we

note that the dual-rail dynamic logic DCVSL is self-

consistent with such zero-delay-overhead self-timed

handshake and can provide a 2x speed performance

advantage compared with conventional static CMOS logic.

As the cost, dynamic circuits generally suffer from higher

power dissipation and less noise immunity.

Fig. 1. (a) Zero-delay-overhead self-timed pipeline structure,

and (b) DCVSL structure.

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2606

III. DESIGN OF PASTA

In this section, the architecture and theory behind PASTA is

presented. The adder first accepts two input operands to

perform half additions for each bit. Subsequently, it iterates
using earlier generated carry and sums to perform half-

additions repeatedly until all carry bits are consumed and

settled at zero level.

A. Architecture of PASTA

The general architecture of the adder is shown in Fig. 1. The

selection input for two-input multiplexers corresponds to the

Req handshake signal and will be a single 0 to 1 transition

denoted by SEL. It will initially select the actual operands

during SEL=0and will switch to feedback/carry paths for

subsequent iterations using SEL=1. The feedback path from

the HAs enables the multiple iterations to continue until the

completion when all carry signals will assume zero values

Fig. 2. General block diagram of PASTA

B. State Diagrams

In Fig. 3, two state diagrams are drawn for the initial phase

and the iterative phase of the proposed architecture. Each

state is represented by (Ci+1Si) pairwhereCi+1, Si represent

carry out and sum values, respectively, from the ith bit adder

block. During the initial phase, the circuit merely works as a
combinational HA operating in fundamental mode. It is

apparent that due to the use of HAs instead of FAs, state (11)

cannot appear. During the iterative phase (SEL=1), the

feedback path through multiplexer block is activated. The

carry transitions (Ci) are allowed as many times as needed to

complete the recursion. From the definition of fundamental

mode circuits, the present design cannot be considered as a

fundamental mode circuit as the input–outputs will go

through several transitions before producing the final output.

It is not a Muller circuit working outside the fundamental

mode either as internally; several transitions will take place,

as shown in the state diagram. This is analogous to cyclic
sequential circuits where gate delays are utilized to separate

individual states.

Fig. 3. State diagrams for PASTA. (a) Initial phase. (b)

Iterative phase

C. Recursive Formula for Binary Addition

Let S ji andC j i+1 denote the sum and carry, respectively,

for ith bit at the jth iteration. The initial condition (j =0) for

addition is formulated as follows

Thejth iteration for the recursive addition is formulated by

The recursion is terminated atkth iteration when the

following condition is met:

Now, the correctness of the recursive formulation is

inductively proved as follows.

Theorem 1:The recursive formulation of (1)–(4) will produce

correct sum for any number of bits and will terminate within

a finite time.

Proof: We prove the correctness of the algorithm by

induction on the required number of iterations for completing
the addition (meeting the terminating condition).

Basis: Consider the operand choices for which no carry

propagation is required, i.e., C0
i = 0 for ∀i,i ∈[0..n]. The

proposed formulation will produce the correct result by a

single-bit computation time and terminate instantly as (4) is

met.

Induction: Assume that Ck
i+1≠0 forsomeith bit at kth

iteration. Let l be such a bit for which Ck
l+1 =1. We show that

it will be successfully transmitted to next higher bit in the

(k+1)th iteration. As shown in the state diagram, the kth

iteration of lth bit state (Ck
l+1,S

k
l) and (l +1)th bit state

Ck
l+2,S

k
l+1) could be in any of (0,0), (0,1),or(1,0) states. As

Ck
l+1 =1, it implies that Sk

l =0. hence, from (3),Ck+1
l+1 =0 for

any input condition between 0to l bits.

We now consider the (l +1)th bit state (Ck
l+2,S

k
l+1) for kth

iteration. It could also be in any of (0,0), (0,1),or(1,0) states.

In(k+1)th iteration, the(0,0)and(1,0)states from the kth

iteration will correctly produce output of(0,1) following (2)

and (3). For(0,1) state, the carry successfully propagates

through this bit level following (3).

Thus, all the single-bit adders will successfully kill or

propagate the carries until all carries are zero fulfilling the
terminating condition. The mathematical form presented

above is valid under the condition that the iterations progress

synchronously for all bit levels and the required input and

outputs for a specific iteration will also be in synchrony with

the progress of one iteration. In the next section, we present

an implementation of the proposed architecture which is

subsequently verified using simulations.

IV. IMPLEMENTATION

A CMOS implementation for the recursive circuit is shown

in Fig. 3. For multiplexers and AND gates we have used

TSMC library implementations while for the XOR gate we

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2607

have used the faster ten transistor implementation based on

transmission gate XORto match the delay with ANDgates

[4]. The completion detection following (4) is negated to

obtain an active high completion signal (TERM). This
requires a large fan-in n-input NORgate. Therefore, an

alternative more practical pseudo-nMOS ratio-ed design is

used. The resulting design is shown in Fig. 3(d). Using the

pseudo-nMOS design, the completion unit avoids the high

fan-in problem as all the connections are parallel. The pMOS

transistor connected toVDDof this ratio-ed design acts as a

load register, resulting in static current drain when some of

the nMOS transistors are on simultaneously. In addition to

the Cis, the negative of SEL signal is also included for the

TERM signal to ensure that the completion cannot be

accidentally turned on during the initial selection phase of the

actual inputs. It also prevents the pMOS pull up transistor
from being always on. Hence, static current will only be

flowing for the duration of the actual computation

Fig. 3. CMOS implementation of PASTA. (a) Single-bit sum

module. (b) 2×1 MUX for the 1 bit adder. (c) Single-bit carry

module. (d) Completion signal detection circuit.

V. SIMULATION RESULTs

PASTA:

Synthesis Results:

RTL Schematic:

Technology Schematic:

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2608

Design Summary:

VI. CONCLUSION

In this paper, for the first time, we propose to exploit the

dynamic pipelining property of self-timed pipeline to realize

reconfigurable throughput/performance trade-off in pipelined

adaptive signal processing systems. PRML read channel
equalizer is considered in this work as a test vehicle. For

practical implementation, we propose to use a zero-delay-

overhead selftimed pipeline style that supports very high

speed operation. We develop techniques to enable the

application of zerodelay-overhead self-timed pipeline in this

context and realize run-time pipeline depth control.

Simulations under variable data rate scenarios demonstrate a

significant performance gain. It is our hope that this work

will motivate the reallife adaptive signal processing system

designers to re-think their design from a self-timed

perspective integrally at the algorithm, architecture, and
circuit levels for potential system performance improvement.

 REFERENCES

[1] B. Widrow and S. D. Stearns, “Adaptive Signal

Processing,” Prentice Hall, 1985.

[2] S. Haykin, “Adaptive filter theory,” Prentice Hall,

1996.

[3] N. R. Shanbhag and K. K. Parhi, “Pipelined

Adaptive Digital Filters,” Kluwer, 1994.

[4] T. Williams, “Self-Timed Pipelines (Chapter 9 in

Design of HighPerformance Microprocessor
Circuits edited by A. Chandrakasan et al.),” John

Wiley & Sons, 2000.

[5] J. Sparso and S. Furber, “Principles of

Asynchronous Circuit Design: A Systems

Perspective,” Kluwer Academic Publishers, 2002.

[6] M. Singh, J. A. Tierno, A. Rylyakov, S. Rylov, and

S. M. Nowick, “An adaptively-pipelined mixed

synchronous-asynchronous digital FIR filter chip

operating at 1.3 gigahertz,” in Proc. Eighth

International Symposium on Asynchronous Circuits

and Systems, April 2002, pp. 84– 95.

[7] A. Efthymiou and J. D. Garside, “Adaptive pipeline
depth control for processor power-management,” in

Proc. IEEE International Conference on Computer

Design: VLSI in Computers and Processors, Sept.

2002, pp. 454–457.

[8] T. E. Williams and M. A. Horowitz, “A zero-

overhead self-timed 160-ns 54-b CMOS divider,”

IEEE Journal of Solid-State Circuits, vol. 26, no.

11, pp. 1651–1661, Nov. 1991.

[9] T. D. Howell, W. L. Abbott, and K. D. Fisher,

“Advanced read channels for magnetic disk drives,”
IEEE Transactions on Magnetics, vol. 30, no. 6, pp.

3807–3812, Nov. 1994.

[10] C. Ruemmler and J. Wilkes, “An introduction to

disk drive modeling,” Computer, vol. 27, no. 3, pp.

17–28, March 1994.

[11] Hitachi Global Storage Technologies, “Deskstar

120GXP OEM Specification v4.1,”

http://www.hitachigst.com/tech/techlib.nsf/products

/Deskstar 120GXP, 2003.

