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Abstract: Reliability is a major concern in advanced 

electronic circuits. Errors caused for example by radiation 

become more common as technology scales. To ensure that 

those errors do not affect  the  circuit  functionality  a  

number  of  mitigation  techniques  can  be  used.  Among  

them,  Error Correction  Codes  (ECC)  are  commonly  

used  to  protect  memories  and  registers  in  electronic 

circuits.  When  ECCs  are  used,  it  is  of  interest  that  in  

addition  to  correcting  a  given  number  of errors,  the  

code  can  also  detect  errors  exceeding  that  number.   

 

This ensures  that  uncorrectable errors are detected and 

therefore silent data corruption does not occur. Among the 

ECCs used to protect circuits, one option is Orthogonal 

Latin Squares (OLS) codes for which decoding can be 

efficiently  implemented.  In  this  paper,  an  enhancement  

of  the  decoding  for  Double  Error Correction (DEC) OLS 

codes is proposed. The proposed scheme tries to reduce the 

probability of silent data corruption by implementing 

mechanisms to detect errors that affect more than two bits. 

Keywords: Concurrent  error  detection,  error  correction  

codes  (ECC),  Latin  squares,  majority  logic  decoding 

(MLD), parity, memory. 

 

I. INTRODUCTION 

The general idea for achieving error detection and correction 

is to add some redundancy  which  means to add some extra  

data  to  a  message,  which  receiver  can  use  to  check  

uniformity  of  the  delivered  message,  and  to  pick  up  

data determined to be corrupt. Error-detection and correction 

scheme may be systematic or it may be non-systematic. In 

the system of the module non-systematic code, an encoded is 

achieved by transformation of the message which  has  least 
possibility  of  number  of  bits  present  in  the  message  

which  is  being  converted.   

 

Another  classification  is  the  type  of  systematic module 

unique data is sent by the transmitter which is attached by a 

fixed number of parity data like check bits  that  obtained  

from  the  data  bits.  The  receiver  applies  the  same  

algorithm  when  only  detection  of  the  error  is required to 

the received data bits which is then compared with its output 

with the receive check bits if the values does not match, there 

we conclude that an error has crept at some point in the 

process of transmission. Error correcting codes are regularly 
used in lower-layer communication, as well as for reliable 

storage in media such as CDs, DVDs, hard disks and RAM. 

 

 

 
Fig.1. Illustration of OS-MLD decoding for OLS codes 

Provision  against  soft  errors  that  apparent  they  as  the  

bit-flips  in  memory  is  the  main  motto  of  error  detection  

and  correction. Several techniques are used present to midi 

gate upsets in memories. For example, the Bose – 

Chaudhuri– Hocquenghem codes, Reed–Solomon codes, 

punctured difference set codes, and matrix codes has been 

used to contact with MCUs in memories. But the above 

codes mentioned requires more area, power, and delay 

overheads since the  encoding and decoding circuits are more 
complex in these complicated codes. Reed-Muller code is 

another protection  code  that  is  able  to  detect  and  correct  

additional  error  besides  a  Hamming  code.  But the major 

drawback of this protection code is the more area it requires 

and the power penalties. Reliability is a major issue for 

advanced electronic circuits.  As technology scales, circuits 

become more  vulnerable  to  error  sources  such  as  noise  

and  radiation  and  also  to  manufacturing  defects  and 

process variations. A number of error mitigation techniques 

can be used to ensure that errors do not compromise the 

circuit functionality. Among those, Error Correction Codes 
(ECCs) are commonly used to protect memories or registers. 

Traditionally, Single Error Correction (SEC) codes that can 

correct one bit error in a word are used as they are simple to 

implement and require few additional bits. A SEC code 

requires a minimum Hamming distance between code-words 

of three. This means that if a double  error  occurs,  the  

erroneous  word  can  be  at  distance  of  one  from  another  

valid  word.  In that case, the decoder will miss-correct the 

word creating an undetected error. To avoid this issue, Single 
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Error Correction Double Error Detection (SEC-DED) codes 

can be used.  Those codes have a minimum Hamming 

distance of four. Therefore, a double error can in the worst 

case cause the word to be at a distance of two of any other 
valid word so that miss-correction is not possible. More 

generally, for a code that can correct t errors, it is of interest 

to also detect t+1 errors. This reduces the probability of 

undetected errors that can cause Silent Data Corruption 

(SDC). SDC is especially dangerous as the system continues 

its operation unaware of the error and this can lead to further 

data corruption or to an erroneous behavior long after the 

original error occurred. 

 

II. LITERATURE SURVEY 

Most prior work in memory ECC has focused on low failure 

rates present at normal operating voltages, and has not 
focused on the problem of persistent failures in caches 

operating at ultra low voltage where defect rates are very 

high. For high defect rates, memory repair schemes based on 

spare rows and columns are not effective. Much higher levels 

of redundancy are required that can tolerate multi-bit errors 

in each cache line. In addition to the techniques in 

[Wilkerson 08] mentioned earlier, other prior work includes 

the two dimensional ECC proposed by [Kim 07] which 

tolerates multiple bit errors due to non-persistent faults, but is 

slow and complicated to decode. Similarly the approach in 

[Kim 98] can tolerate as many faults as can be repaired by 
spare columns, which would be insufficient in the present 

context with high bit-error rate. In some cases, check bits are 

used along with spare rows and columns to get combined 

fault-tolerance. In [Stapper 92], interleaved words with 

redundant word lines and bit lines are used in addition to the 

check bits on each word. [Su 05] proposes an approach where 

the hard errors are mitigated by mapping to redundant 

elements and ECC is used for the soft errors. Such 

approaches will not be able to provide requisite fault 

tolerance under high bit error rates when there are not enough 

redundant elements to map all the hard errors. The 
application of OLS codes for handling the high defect rates in 

low power caches as described in [Christi 09] provides a 

more attractive solution. While OLS codes require more 

redundancy than conventional ECC, the one-step majority 

encoding and decoding process is very fast and can be scaled 

up for handling large numbers of errors as opposed to BCH 

codes, which while providing the desired level of reliability 

requires multi-cycles for decoding [Lin 83]. The post-

manufacturing customization approach proposed in this paper 

can be used to reduce the number of check bits and hence the 

amount of redundancy required in the memory while still 

providing the desired level of reliability. Note that the 
proposed approach does not reduce the hardware 

requirements for the OLS ECC as the whole code needs to be 

implemented on-chip since the location of the defects is not 

known until post-manufacturing test is performed. 

 

III. ORTHOGONAL LATIN SQUARES CODES 

The concept of Latin squares and their applications are well 

known [12]. A Latin square of size  m is an  m  *  m  matrix 

that has permutations of the digits  0,1,..m-1  in both its rows 

and columns. For each value of m  there can be more than 

one Latin square. When that is the case, two Latin squares 

are said to  be  orthogonal  if  when  they  are  superimposed  
every  ordered  pair  of  elements  appears  only  once. 

Orthogonal Latin Squares (OLS) codes are derived from 

Orthogonal Latin squares [9]. These codes have k=m2 data 

bits and 2tm check bits where t is the number of errors that 

the code can correct. For a Double Error Correction (DEC) 

code t=2 and therefore 4m check bits are used. One 

advantage of OLS codes is that their construction is modular. 

This means that to obtain a code that can correct t+1 errors, 

simply 2m check bits are added to the code that can correct t 

errors. The modular property enables the selection of the 

error correction capability for a given word size. As  

mentioned  in  the  introduction,  OLS  codes  can  be  
decoded  using  One  Step  Majority  Logic Decoding  (OS-

MLD)  as  each  data  bit  participates  in  exactly  2t  check  

bits  and  each  other  bit  participates in at most one of those 

check bits. This enables a simple correction when the 

number of bits in error is t or less. The 2t check bits are 

recomputed and a majority vote is taken, if a value of one is  

obtained,  the  bit  is  in  error  and  must  be  corrected.  

Otherwise the bit is correct.    As  long  as  the number of 

errors is  t  or less  this ensures the error correction as the 

remaining  t-1  errors can, in the worst case affect t-1 check 

bits so that still a majority of t+1 triggers the correction of an 
erroneous bit. For an OLS code that can correct t errors using 

OS-MLD, t+1 errors can cause miss-corrections. This occurs 

for example if the errors affect t+1 parity bits in which bit di 

participates as this bit will be miss-corrected. The same 

occurs when the number of errors is larger than t+1. Each of 

the 2t check bits in which a data bit participates is taken from 

a group of m parity bits. Those groups are bits 1 to m, m+1 

to 2m, 2m+1 to 3m and 3m+1 to 4m. 

 
Fig 2: Parity check matrix for OLS code having k and t as 

16&1 

The „H‟ matrix for OLS codes is build from their properties. 

The matrix is capable of correcting single type error. By the  

fact  that  in  direction  of  the  modular  structure  it  might  

be  able  to  correct  many  errors.  They have check bits of 

number “2tm” in which, „t‟ stands for numeral of errors such 

that code corrects. If we wanted to correct a double bit then 

we have „2‟ as the value of t and thereby the check bits 
required are 4m.the H matrix , of Single Error Code „OLS‟ 

code is construct as : 
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a. In the above, I2m is the identity matrix of size 2 m. 

b. M1, M2 are the matrices of given size m × m2.  

„‟The matrix M1 have m ones in respective rows. For the rth 

row, the 1‟s are at the position (r − 1) × m + 1,(r − 1)× m + 
2,………….(r − 1) × m+ m − 1, (r − 1) × m + m”. The matrix 

M2 is structured as:M2 = [Im Im . . . Im]  (2) 

 

For the given value 4 for m, the matrices M1 and M2 can be 

evidently experiential in Fig. H Matrix in the check bits we 

remove is evidently the G Matrix 

 
On concluding the above mentioned, it is evident that the 

encoder is intriguing m2 data bits and computing 2tm parity 

check bits by using G matrix . These resulted from the Latin 

Squares have the below properties: 

a. Exactly in 2t parity checks each info bit is involved. 

b. Utmost one in parity check bits info bits takes 

participation.  

We use the above properties in the later section to examine 

our proposed technique. 

 
IV. PROPOSED METHOD 

The proposed method is based on the observation that by 

construction, the groups formed by the mparity bits in each 

Mi matrix have at most a one in every column of H.For the 

example in Fig. 2, those groups correspond to bits (or rows) 

1–4 (M1), 5–8 (M2), 9–12 (M3), and 13–16 (M4). Therefore, 

any combination of four bits from one of those groups will at 

most sharea one with the existing columns inH. For example, 

the combination formed by bits 1, 2, 3, and 4 shares only bit 

1 with columns 1, 2, 3,and 4. This is the condition needed to 

enable OS-MLD. Therefore, combinations of four bits taken 

all from one of those groups can be used to add data bit 
columns to the Hmatrix. For the code with k=16 andt =2 

shown in Fig. 2, we have m=4. Hence, one combination can 

be formed in each group by setting all the positions in the 

group to one. This is shown in Fig. 3, where the columns 

added are highlighted. In this case, the data bit block is 

extended fromk=16 to 

k=20 bits. 

 
Fig. 3. Parity check matrix H for the extended OLS code with 

k=20 and t =2 

The proposed method first divides the parity check bits in 

groups of m bits given by the Mi matrices. Then, the second 

step is for each group to find the combinations of 2t bits such 

that any pair of them share at most one bit. This second step 
can be seen as that of constructing an OS-MLD code with m 

parity check bits. Obviously, to keep the OS-MLD property 

for the extended code, the combinations formed for each 

group have to share at most one bit with the combinations 

formed in the other 2t −1 groups. This is not an issue as by 

construction, different groups do not share any bit. When m 

is small finding, such combinations is easy. For example, in 

the case considered in Fig. 3, there is only one possible 

combination per group. When m is larger, several 

combinations can be formed in each group. This occurs, for 

example, when m=8. In this case, the OLS code has a data 

block size k =64. With eight positions in each group, now 
two combinations of four of them that share at most one 

position can be formed. This means that the extended code 

will have eight (4×2) additional data bits. As the size of the 

OLS code becomes larger, the number of combinations in a 

group also grows. For the case m=16 and k =256, each group 

has 16 elements. Interestingly enough, there are 20 

combinations of four elements that share at most one 

element. In fact, those combinations are obtained using the 

extended OLS code shown in Fig. 3 in each of the groups. 

Therefore, in this case, 4×20=80 data bits can be added in the 

extended code. The parameters of the extended codes are 
shown in Table I, where n−k =2tm is the number of parity 

bits. The data block size for the original OLS codes (kOLS) 

is also shown for reference The method can be applied to the 

general case of an OLS code with k =m2 that can correct t 

errors. Such a code has 2tm parity bits that as before are 

divided in groups ofmbits. The code can be extended by 

selecting combinations of 2t parity bits taken from each of 

the groups. These combinations can be added to the code as 

long as any pair of the new combinations share at most one 

bit. When m is small, a set of such combinations with 

maximum size can be easily found. However, as m grows, 
finding such a set is far from trivial (as mentioned before, 

solving that problem is equivalent to designing an OS-MLD 

code with m parity bits that can correct t errors). An upper 

bound on the number of possible combinations can be 

derived by observing that any pair of bits can appear only in 

one combination. Because each combination has 2t bits, 

there are (2t 2) pairs in each combination. The number of 

possible pairs in each group of m bits is m 2. Therefore, the 

number of combinations NG in a group of m bits has to be 

such that 
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One particular case for which a simple solution can be found 

is when m=2t ×l. In this case, an OLS code with a smaller 

data block size (l2) can be used in each group. One example 

for t =2 is when m=16 (k=256) for which the OLS code with 
block size k=42 can be used in each group as explained 

before. Similarly, for t =2, whenk=1024 (m=32) the OLS 

code of size k =82 can be used in each group. 

 

V. CONCLUSION 

In  this  brief,  a  CED  technique  for  OLS  codes encoders  

and  syndrome  computation  was  proposed.  The proposed 

technique  took advantage of the properties of OLS codes  to  

design  a  parity  prediction  scheme  that  could  be 

efficiently  implemented  and  detects  all  errors  that  affect  

a single circuit node. The technique was evaluated for 

different word sizes, which showed that for large words the 
overhead is small.  This  is  interesting  as  large  word  sizes  

are  used,  for example, in caches for which OLS codes have 

been recently proposed.  The  proposed  error  checking  

scheme  required  a significant delay; however, its impact on 

access time could be minimized. This was achieved by 

performing the checking in parallel with the writing of the 

data in the case of the encoder and in parallel with the 

majority voting and error correction in the case of the 

decoder.In  a  general  case,  the  proposed  scheme  required  

a much  larger  overhead  as  most  ECCs  did  not  have  the 

properties of OLS codes. This limited the applicability of the 
proposed CED scheme to OLS codes. The availability of low 

overhead  error  detection  techniques  for  the  encoder  and 

syndrome computation is an additional reason to consider the 

use of OLS codes in high-speed memories and caches. 
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