
International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2816

VLSI DESIGN OF ERROR DETECTION AND CORRECTION USING

ORTHOGONAL LATIN SQUARE CODES

Banoth Venkata Sai Kumar
1
, G Prasanna Kumar

2

1
PG Scholar in DSCE,

2
M.Tech, Asst. Professor, ECE Department

Malla Reddy Engineering College, Hyderabad, Telangana

Abstract: Reliability is a major concern in advanced

electronic circuits. Errors caused for example by radiation

become more common as technology scales. To ensure that

those errors do not affect the circuit functionality a

number of mitigation techniques can be used. Among

them, Error Correction Codes (ECC) are commonly

used to protect memories and registers in electronic

circuits. When ECCs are used, it is of interest that in

addition to correcting a given number of errors, the

code can also detect errors exceeding that number.

This ensures that uncorrectable errors are detected and

therefore silent data corruption does not occur. Among the

ECCs used to protect circuits, one option is Orthogonal

Latin Squares (OLS) codes for which decoding can be

efficiently implemented. In this paper, an enhancement

of the decoding for Double Error Correction (DEC) OLS

codes is proposed. The proposed scheme tries to reduce the

probability of silent data corruption by implementing

mechanisms to detect errors that affect more than two bits.

Keywords: Concurrent error detection, error correction

codes (ECC), Latin squares, majority logic decoding

(MLD), parity, memory.

I. INTRODUCTION

The general idea for achieving error detection and correction

is to add some redundancy which means to add some extra

data to a message, which receiver can use to check

uniformity of the delivered message, and to pick up

data determined to be corrupt. Error-detection and correction

scheme may be systematic or it may be non-systematic. In

the system of the module non-systematic code, an encoded is

achieved by transformation of the message which has least
possibility of number of bits present in the message

which is being converted.

Another classification is the type of systematic module

unique data is sent by the transmitter which is attached by a

fixed number of parity data like check bits that obtained

from the data bits. The receiver applies the same

algorithm when only detection of the error is required to

the received data bits which is then compared with its output

with the receive check bits if the values does not match, there

we conclude that an error has crept at some point in the

process of transmission. Error correcting codes are regularly
used in lower-layer communication, as well as for reliable

storage in media such as CDs, DVDs, hard disks and RAM.

Fig.1. Illustration of OS-MLD decoding for OLS codes

Provision against soft errors that apparent they as the

bit-flips in memory is the main motto of error detection

and correction. Several techniques are used present to midi

gate upsets in memories. For example, the Bose –

Chaudhuri– Hocquenghem codes, Reed–Solomon codes,

punctured difference set codes, and matrix codes has been

used to contact with MCUs in memories. But the above

codes mentioned requires more area, power, and delay

overheads since the encoding and decoding circuits are more
complex in these complicated codes. Reed-Muller code is

another protection code that is able to detect and correct

additional error besides a Hamming code. But the major

drawback of this protection code is the more area it requires

and the power penalties. Reliability is a major issue for

advanced electronic circuits. As technology scales, circuits

become more vulnerable to error sources such as noise

and radiation and also to manufacturing defects and

process variations. A number of error mitigation techniques

can be used to ensure that errors do not compromise the

circuit functionality. Among those, Error Correction Codes
(ECCs) are commonly used to protect memories or registers.

Traditionally, Single Error Correction (SEC) codes that can

correct one bit error in a word are used as they are simple to

implement and require few additional bits. A SEC code

requires a minimum Hamming distance between code-words

of three. This means that if a double error occurs, the

erroneous word can be at distance of one from another

valid word. In that case, the decoder will miss-correct the

word creating an undetected error. To avoid this issue, Single

mailto:1venkatakrishna.mandala@gmail.com,
mailto:1venkatakrishna.mandala@gmail.com,

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2817

Error Correction Double Error Detection (SEC-DED) codes

can be used. Those codes have a minimum Hamming

distance of four. Therefore, a double error can in the worst

case cause the word to be at a distance of two of any other
valid word so that miss-correction is not possible. More

generally, for a code that can correct t errors, it is of interest

to also detect t+1 errors. This reduces the probability of

undetected errors that can cause Silent Data Corruption

(SDC). SDC is especially dangerous as the system continues

its operation unaware of the error and this can lead to further

data corruption or to an erroneous behavior long after the

original error occurred.

II. LITERATURE SURVEY

Most prior work in memory ECC has focused on low failure

rates present at normal operating voltages, and has not
focused on the problem of persistent failures in caches

operating at ultra low voltage where defect rates are very

high. For high defect rates, memory repair schemes based on

spare rows and columns are not effective. Much higher levels

of redundancy are required that can tolerate multi-bit errors

in each cache line. In addition to the techniques in

[Wilkerson 08] mentioned earlier, other prior work includes

the two dimensional ECC proposed by [Kim 07] which

tolerates multiple bit errors due to non-persistent faults, but is

slow and complicated to decode. Similarly the approach in

[Kim 98] can tolerate as many faults as can be repaired by
spare columns, which would be insufficient in the present

context with high bit-error rate. In some cases, check bits are

used along with spare rows and columns to get combined

fault-tolerance. In [Stapper 92], interleaved words with

redundant word lines and bit lines are used in addition to the

check bits on each word. [Su 05] proposes an approach where

the hard errors are mitigated by mapping to redundant

elements and ECC is used for the soft errors. Such

approaches will not be able to provide requisite fault

tolerance under high bit error rates when there are not enough

redundant elements to map all the hard errors. The
application of OLS codes for handling the high defect rates in

low power caches as described in [Christi 09] provides a

more attractive solution. While OLS codes require more

redundancy than conventional ECC, the one-step majority

encoding and decoding process is very fast and can be scaled

up for handling large numbers of errors as opposed to BCH

codes, which while providing the desired level of reliability

requires multi-cycles for decoding [Lin 83]. The post-

manufacturing customization approach proposed in this paper

can be used to reduce the number of check bits and hence the

amount of redundancy required in the memory while still

providing the desired level of reliability. Note that the
proposed approach does not reduce the hardware

requirements for the OLS ECC as the whole code needs to be

implemented on-chip since the location of the defects is not

known until post-manufacturing test is performed.

III. ORTHOGONAL LATIN SQUARES CODES

The concept of Latin squares and their applications are well

known [12]. A Latin square of size m is an m * m matrix

that has permutations of the digits 0,1,..m-1 in both its rows

and columns. For each value of m there can be more than

one Latin square. When that is the case, two Latin squares

are said to be orthogonal if when they are superimposed
every ordered pair of elements appears only once.

Orthogonal Latin Squares (OLS) codes are derived from

Orthogonal Latin squares [9]. These codes have k=m2 data

bits and 2tm check bits where t is the number of errors that

the code can correct. For a Double Error Correction (DEC)

code t=2 and therefore 4m check bits are used. One

advantage of OLS codes is that their construction is modular.

This means that to obtain a code that can correct t+1 errors,

simply 2m check bits are added to the code that can correct t

errors. The modular property enables the selection of the

error correction capability for a given word size. As

mentioned in the introduction, OLS codes can be
decoded using One Step Majority Logic Decoding (OS-

MLD) as each data bit participates in exactly 2t check

bits and each other bit participates in at most one of those

check bits. This enables a simple correction when the

number of bits in error is t or less. The 2t check bits are

recomputed and a majority vote is taken, if a value of one is

obtained, the bit is in error and must be corrected.

Otherwise the bit is correct. As long as the number of

errors is t or less this ensures the error correction as the

remaining t-1 errors can, in the worst case affect t-1 check

bits so that still a majority of t+1 triggers the correction of an
erroneous bit. For an OLS code that can correct t errors using

OS-MLD, t+1 errors can cause miss-corrections. This occurs

for example if the errors affect t+1 parity bits in which bit di

participates as this bit will be miss-corrected. The same

occurs when the number of errors is larger than t+1. Each of

the 2t check bits in which a data bit participates is taken from

a group of m parity bits. Those groups are bits 1 to m, m+1

to 2m, 2m+1 to 3m and 3m+1 to 4m.

Fig 2: Parity check matrix for OLS code having k and t as

16&1

The „H‟ matrix for OLS codes is build from their properties.

The matrix is capable of correcting single type error. By the

fact that in direction of the modular structure it might

be able to correct many errors. They have check bits of

number “2tm” in which, „t‟ stands for numeral of errors such

that code corrects. If we wanted to correct a double bit then

we have „2‟ as the value of t and thereby the check bits
required are 4m.the H matrix , of Single Error Code „OLS‟

code is construct as :

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2818

a. In the above, I2m is the identity matrix of size 2 m.

b. M1, M2 are the matrices of given size m × m2.

„‟The matrix M1 have m ones in respective rows. For the rth

row, the 1‟s are at the position (r − 1) × m + 1,(r − 1)× m +
2,………….(r − 1) × m+ m − 1, (r − 1) × m + m”. The matrix

M2 is structured as:M2 = [Im Im . . . Im] (2)

For the given value 4 for m, the matrices M1 and M2 can be

evidently experiential in Fig. H Matrix in the check bits we

remove is evidently the G Matrix

On concluding the above mentioned, it is evident that the

encoder is intriguing m2 data bits and computing 2tm parity

check bits by using G matrix . These resulted from the Latin

Squares have the below properties:

a. Exactly in 2t parity checks each info bit is involved.

b. Utmost one in parity check bits info bits takes

participation.

We use the above properties in the later section to examine

our proposed technique.

IV. PROPOSED METHOD

The proposed method is based on the observation that by

construction, the groups formed by the mparity bits in each

Mi matrix have at most a one in every column of H.For the

example in Fig. 2, those groups correspond to bits (or rows)

1–4 (M1), 5–8 (M2), 9–12 (M3), and 13–16 (M4). Therefore,

any combination of four bits from one of those groups will at

most sharea one with the existing columns inH. For example,

the combination formed by bits 1, 2, 3, and 4 shares only bit

1 with columns 1, 2, 3,and 4. This is the condition needed to

enable OS-MLD. Therefore, combinations of four bits taken

all from one of those groups can be used to add data bit
columns to the Hmatrix. For the code with k=16 andt =2

shown in Fig. 2, we have m=4. Hence, one combination can

be formed in each group by setting all the positions in the

group to one. This is shown in Fig. 3, where the columns

added are highlighted. In this case, the data bit block is

extended fromk=16 to

k=20 bits.

Fig. 3. Parity check matrix H for the extended OLS code with

k=20 and t =2

The proposed method first divides the parity check bits in

groups of m bits given by the Mi matrices. Then, the second

step is for each group to find the combinations of 2t bits such

that any pair of them share at most one bit. This second step
can be seen as that of constructing an OS-MLD code with m

parity check bits. Obviously, to keep the OS-MLD property

for the extended code, the combinations formed for each

group have to share at most one bit with the combinations

formed in the other 2t −1 groups. This is not an issue as by

construction, different groups do not share any bit. When m

is small finding, such combinations is easy. For example, in

the case considered in Fig. 3, there is only one possible

combination per group. When m is larger, several

combinations can be formed in each group. This occurs, for

example, when m=8. In this case, the OLS code has a data

block size k =64. With eight positions in each group, now
two combinations of four of them that share at most one

position can be formed. This means that the extended code

will have eight (4×2) additional data bits. As the size of the

OLS code becomes larger, the number of combinations in a

group also grows. For the case m=16 and k =256, each group

has 16 elements. Interestingly enough, there are 20

combinations of four elements that share at most one

element. In fact, those combinations are obtained using the

extended OLS code shown in Fig. 3 in each of the groups.

Therefore, in this case, 4×20=80 data bits can be added in the

extended code. The parameters of the extended codes are
shown in Table I, where n−k =2tm is the number of parity

bits. The data block size for the original OLS codes (kOLS)

is also shown for reference The method can be applied to the

general case of an OLS code with k =m2 that can correct t

errors. Such a code has 2tm parity bits that as before are

divided in groups ofmbits. The code can be extended by

selecting combinations of 2t parity bits taken from each of

the groups. These combinations can be added to the code as

long as any pair of the new combinations share at most one

bit. When m is small, a set of such combinations with

maximum size can be easily found. However, as m grows,
finding such a set is far from trivial (as mentioned before,

solving that problem is equivalent to designing an OS-MLD

code with m parity bits that can correct t errors). An upper

bound on the number of possible combinations can be

derived by observing that any pair of bits can appear only in

one combination. Because each combination has 2t bits,

there are (2t 2) pairs in each combination. The number of

possible pairs in each group of m bits is m 2. Therefore, the

number of combinations NG in a group of m bits has to be

such that

International Journal For Technological Research In Engineering

Volume 3, Issue 10, June-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 2819

One particular case for which a simple solution can be found

is when m=2t ×l. In this case, an OLS code with a smaller

data block size (l2) can be used in each group. One example

for t =2 is when m=16 (k=256) for which the OLS code with
block size k=42 can be used in each group as explained

before. Similarly, for t =2, whenk=1024 (m=32) the OLS

code of size k =82 can be used in each group.

V. CONCLUSION

In this brief, a CED technique for OLS codes encoders

and syndrome computation was proposed. The proposed

technique took advantage of the properties of OLS codes to

design a parity prediction scheme that could be

efficiently implemented and detects all errors that affect

a single circuit node. The technique was evaluated for

different word sizes, which showed that for large words the
overhead is small. This is interesting as large word sizes

are used, for example, in caches for which OLS codes have

been recently proposed. The proposed error checking

scheme required a significant delay; however, its impact on

access time could be minimized. This was achieved by

performing the checking in parallel with the writing of the

data in the case of the encoder and in parallel with the

majority voting and error correction in the case of the

decoder.In a general case, the proposed scheme required

a much larger overhead as most ECCs did not have the

properties of OLS codes. This limited the applicability of the
proposed CED scheme to OLS codes. The availability of low

overhead error detection techniques for the encoder and

syndrome computation is an additional reason to consider the

use of OLS codes in high-speed memories and caches.

 REFERENCES

[1] C. L. Chen and M. Y. Hsiao, “Error-correcting

codes for semiconductor memory applications: A

state-of-the-art review,” IBM J. Res. Develop., vol.

28, no. 2, pp. 124–134, Mar. 1984.

[2] E. Fujiwara, Code Design for Dependable Systems:
Theory and Practical Application. New York:

Wiley, 2006.

[3] A. Dutta and N. A. Touba, “Multiple bit upset

tolerant memory using a selective cycle avoidance

based SEC-DED-DAEC code,” in Proc. IEEE VLSI

Test Symp., May 2007, pp. 349–354.

[4] R. Naseer and J. Draper, “DEC ECC design to

improve memory reliability in sub -100nm

technologies,” in Proc. IEEE Int. Conf. Electron.,

Circuits, Syst., Sep. 2008, pp. 586–589.

[5] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and

A. Salsano, “Fault tolerant solid state mass memory
for space appl ications,” IEEE Trans. Aerosp.

Electron. Syst., vol. 41, no. 4, pp. 1353–1372, Oct.

2005.

[6] S. Lin and D. J. Costello, Error Control Coding, 2nd

ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.

[7] S. Ghosh and P. D. Lincoln, “Dynamic low-density

parity check codes for fault-tolerant nano-scale

memory,” in Proc. Found. Nanosci., 2007, pp. 1–5.

[8] H. Naeimi and A. DeHon, “Fault secure encoder

and decoder for nanoMemory applications,” IEEE

Trans. Very Large Scale Integr. (VLSI) Syst., vol.

17, no. 4, pp. 473–486, Apr. 2009.

