
International Journal For Technological Research In Engineering

Volume 3, Issue 11, July-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 3186

ALGORITHM AND IMPLEMENTATION OF MODEL BASED

TESTING FOR PROTOCOL VERIFICATION

Arpita Mathur

Department of Computer Science, Lachoo Memorial College of Sc. & Tech.

A-Sector, Shastri Nagar, Jodhpur (India)

Abstract: In this paper we will explain how model based

testing can be used to test the protocols that shows

sequential (time based) temporal relationship between

entities based on UML sequence diagram. First the

dynamic model and temporal relationship are validated

through model based testing. After validation this dynamic

model becomes the oracle for validating the proposed

protocol. An experiment was conducted on this by giving

random inputs to the temporal relationship and dynamic

model. Error was detected if there is difference in outputs of

the two.

I. INTRODUCTION

An algorithm was developed for dynamic model based

testing. Temporal relationships were validated through model

based testing. Following algorithm tests the proposed

protocol specification.

Step 1: Temporal relationship and dynamic model made

through message sequence matrix are validated.

Step 2: Errors are injected / seeded in temporal relationship

(TR).

Step 3: Random inputs are given to temporal relationship and

dynamic model.

Step 4: The mismatch in output of temporal relationship and

dynamic model denotes detection of error.

Step 5: Repeate Step 3 to Step 4 1000 time and record the

behaviour i.e. mismatch/match.

II. RESULT AND ANALYSIS

The experiment was conducted to model a given protocol.

The model prepared is able to test the protocol at early stage

of the development. In this experiment the ability of model is

verified through error seeding technique. The experiment is

run for 5 instances of single seeded error (as shown in table

1), for each error 1000 attempts were made and this process

was iterated 20 times. The data generated through this

attempt formed the statistical base to analyze the behaviors of

random test cases. Below are drawn charts to show relation

between the numbers of attempts required to kill error and

the number of errors killed successfully. X- axis represents

the data sets and Y – axis represents number of attempts.

Table 1 Seeded errors

Error number The error seeded

Error 1 t[1][0] made == instead of >

Error 2 t[3][2] made <= instead of >

Error 3 t[5][4] made don't care instead of >

Error 4 t[7][6] made >= instead of >

Error 5 t[4][3] made < instead of >

Figure 1: Error 1

Figure 2: Error 2

Figure 3: Error 3

Figure 4: Error 4

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data sets
A

tt
e
m

p
ts

/E
rr

o
rs

First Killed Attempted

Total killed error

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data sets

A
tt

e
m

p
ts

/E
rr

o
rs

First Killed Attempted

Total killed error

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data Sets

A
tt

e
m

p
ts

/E
rr

o
rs

First Killed Attempted

Total killed error

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data Sets

A
tt

e
m

p
ts

/E
rr

o
rs

First Killed Attempted

Total killed error

International Journal For Technological Research In Engineering

Volume 3, Issue 11, July-2016 ISSN (Online): 2347 - 4718

www.ijtre.com Copyright 2016.All rights reserved. 3187

Figure 5: Error 5

Figure 6: Relation between average of first killed attempt and

average of total killed errors

III. CONCLUSION

By conducting the experiment, various results were recorded

{Appendix A}. The results were visualized in line graphs as

shown in fig 1 to 6. By analysis the results obtained through

experiment, it is found that

 Number of time the seeded error successful caught

i.e. total killed errors was almost constant for a

specific error. The model behaves in the consistent

manner for various set of random test cases. So

confidence in randomization of input data is

strengthened.

 Earliest first successful attempt to catch the seeded

error was below 10 in most of the cases i.e. 4 out of

5. The dynamic model of given protocol catches

error in few attempts and so the model as well as

random testing is dependable.

 Number of first successful attempt in average is

increased, as average of successful detection of

errors is decreased, this verifies the statistical

phenomena in the experiment. As per the statistics,

frequent event will occur more times in a given

duration or attempts. So the first successful attempt

occurs early for easily detectable errors. [Figure 6]

 Out of total 100 attempts, each of 1000 random test

cases, one exceptional case was observed, in which

the seeded error was not caught. A further

investigation shown that this exception occurred in

the case of error no 4, the seeded error was ≥

(greater than or equal to) instead of >(greater than).

It can easily be inferred that the error injected cover

most of the correct inputs also hence malfunction in

rare case. So the phenomenon of not detecting an

error was due to nature of less likely occurrences.

REFERENCES

[1] J.J. Marciniak, “Encyclopedia on Software

Engineering”, Wiley, 2001

[2] Harry Robinson, “Intelligent Test Automation “,

2000

[3] Bill Hayduk, “Model-Based Testing for Java

Applications “, 2007

[4] ITT Corporation, “Model Based Testing”, 2006

[5] Grady Booch, James Rumbaugh and Ivar Jacobson,

“The Unified Modeling Language User Guide”,

second edition, 2007

[6] Perdita Stevens & Rob Pooley, “Using UML,

Software Engineering with Objects and

Components”, second edition, 2006.

[7] Martin Fowler & Kendall Scott, “UML Distilled, A

Brief Guide to the Standard Object Modeling

Language”, first edition, 2005.

[8] Hans-Erik Eriksson, Magnus Penker, Brain Lyons,

David Fado, “UML 2 Toolkit”, OMG Press, Wiley,

second edition, 2007, ISBN 10: 81-265-0466-8.

[9] Dehla Sokenou, “Generating Test Sequences from

UML Sequence Diagrams and State Diagrams”,

GEBIT Solutions.

[10] „Unified Modeling Language Specification”,

Version 2.0, OMG, 2004.

[11] Lu Luo, “A UML Documentation for an Elevator

System Distributed Embedded Systems”, PhD

Project Report, December 2000.

[12] S. Ntafos, “On Random and Partition Testing”,

Procedings of International Symposium on

Software Testing and Analysis (ISSTA), 1998, pp.

42–48.

[13] Ibrahim K. El-Far and James A. Whittaker, “Model-

Based Software Testing”, Florida Institute of

Technology.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Data sets

A
tt

e
m

p
ts

/E
rr

o
rs

First Killed Attempted

Total killed error

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

Avg of First Killed Attempt

A
v
g

 o
f

T
o

ta
l

K
il

le
d

 E
rr

o
r
s

Avg of Total

Killed Errors

